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Lévy walks on finite intervals with absorbing boundaries are studied using analytic and Monte Carlo
techniques. The integral equations foviyewvalks in infinite 1D systems are generalized to treat the evolution
of the probability distribution on finite and semi-infinite intervals. In particular the near-boundary behavior of
the probability distribution and also its properties at asymptotically large times are studied. The probability
distribution is found to be discontinuous near the boundary ferylealks in finite and semi-infinite systems.
Previous results for infinite systems, and a previous scaling for semi-infinite systems, are reproduced. The use
of linear operator theory to solve the integral equations governing the evolution of tyenladk implies that
the probability distribution decays exponentially at large times. For a jump distribution that satisfies
¥(x)~|x|~* for large|x|, the decay constant for the exponential decay is estimated and found to scale at large
L asL' @ for 2<a<3 andL ™! for 1<a<2, in contrast td_~2 for normal diffusion. For 2 «<3, the ratio
of the decay constants of the first and second eigenfunctions is less than 4 fot Jasgethat the second
eigenfunction is relatively more important in describing the system’s large time behavior than the correspond-
ing eigenfunction for normal diffusion. For<la<2 the ratio of the decay constants may be greater or less
than 4. The shapes of the eigenfunctions for theylLprocesses are obtained numerically and the strong
similarity between the first eigenfunction and its normal diffusion counterpart forr2 3 indicate that it
would be difficult experimentally to distinguish such aweprocess on a finite interval from a normal diffusive
system by considering only the asymptotic shape of the probability distributionz @ we observe signifi-
cant differences between the first and second eigenfunctions and their normal diffusion counterparts. For
moderately large intervals, the first eigenfunction is flatter with large boundary discontinuities while the second
eigenfunction can differ from its normal diffusion counterpart in both its symmetry properties and number of
nodes[S1063-651X%98)09210-1

PACS numbegps): 05.40+j, 02.50—r

[. INTRODUCTION principal reason for this is the mean square displacement of
the Levy flight random walker diverges in a nonphysical
Diffusion processes are commonly modeled using randonmanner at finite times. In order for iz flights to have
walks. A simple model for a diffusive random walk involves physical applications, the mean squared displacement should
a walker that steps at regular time intervals with a specifiedhot diverge within a finite time period. One method sug-
probability distribution of step length&nown as the jump gested for removing the nonphysicality of thewyelight is
distribution that is independent of the current position of thethe truncated [ey flight (TLF) model[6]. The TLF model
walker. If the jump distribution possesses finite first and secfeplaces the jump distribution, which has a divergent second
ond moments, the evolution of the random walker's posi-moment by a [ey distribution truncated at large step sizes.
tional probability distribution can be described by the The truncated [ey distribution has a large but still finite
Fokker-Planck equation for diffusion with a constant diffu- second moment. The TLF model displays behavior similar to
sion coefficienf1]. Lévy flights at short times but at asymptotically large times it
Where a random walker’s jump distribution does not pos-s governed by the central limit theorem as are standard dif-
sess a finite second moment, the central limit theorem canndétsive random walks. A more sophisticated method of deal-
be used to describe the walker's motion in terms of a diffu-ing with the divergent mean square displacement in the/Le
sion equation[2,3]. The motion of a random walker that flight model is the Ley walk model[7], in which the time
steps at regular time intervals with a jump distribution nottaken to complete a step depends on the step length, with
possessing a finite second moment is known aswy flght  longer steps taking more time. The wewalk couples the
[4] (alternative more restrictive definitions ex[&]). For a  spatial and temporal aspects of the walker's motion so that
Levy flight, the probability distribution of the walker's posi- the mean squared displacement cannot diverge within a finite
tion can be represented by one of a set of distributiongime.
known as the Ley stable distributiond2,3] after a large A consequence of the \g flight and Levy walk models
number of steps. is that in general the evolution of the position of the random
The theory of Ley flights remained a mathematical curi- walker (in a probabilistic sengemust be described by inte-
osity with few physical applications for many years. Thegral equations rather than partial differential equati9].
The primary difference between g diffusion processes
and normal diffusion is the scaling of the mean squared dis-
*Electronic address: peter@physics.usyd.edu.au placement with time. Normal diffusion processes have mean
TElectronic address: robinson@physics.usyd.edu.au squared displacemen{s?) that increase only linearly with
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time. Levy processes though can display superdiffusiveerality the units of time can then be rescaled to ensure
properties so thatr?)~t” with y>1 [10]. Random walks =1. As noted in Sec. |, ifs(x) possesses a divergent second
with subdiffusive behavior y<1) have also been consid- moment it gives rise to the properties of the system such as
ered[11] but we do not consider such models in this papersuperdiffusion. Fog/(x) to have a divergent second moment
A Lévy walk differs from a Ley flight in the sense that is and to be monotonically decreasing for larigg, we con-

not a Markovian process; i.e., the future motion of the ran-sider y(x) such thaty(x)~|x|~“ for large |x|, where 1
dom walker is not completely independent of its past history< a< 3. The indexx is then used to classify g processes,
but possesses a memory since walkers continue in a fixesince their behavior in an infinite 1D system depends only on
direction for a specifiedsometimes largedistance between « after a large number of stepg,3]. If we denote the turn-
turning points. Ley walks possess some similarities to Mar- ing point distribution byQ(x,t), one has

kovian processes since, at each turning point, the position of

the random walker's next turning point is chosen indepen- N L P , e
dently of its past history. vy walks thus form a class of Qx.t)= 0 OQ(X )T (x=x" t-t)dx'dt
semi-Markovian process¢42].

The behavior of Ley walks and flights is well understood + 8(X—Xg) 8(1), (2

in infinite one-dimensionglLD) systemg10]. Levy flights in

semi-infinite 1D systems have been considered by Zumofefn a finite interval O,L] with absorbing boundaries, where

and Klafter[5] in the special case where the jump distribu-Xo iS the initial position of the walker. Equatiof2) can be

tion of the random walkers is itself a iz distribution. understood by noting that the integral term links the current

While the Lery walk on a half axis is not as well understood, turning point distribution to turning point distributions at

Zumofen and Klafter's numerical analysis also showed clos@revious times through the jump distribution. The delta func-

analogies between the scaling behavior ofy dlights and ~ tion term corresponds to the initial position of the random

Lévy walks[5]. walker[att=0 in Eq.(2)], when the integral term vanishes.
The main purpose of this paper is to determine the prop- The probability distribution for the position of the random

erties of Lary walks on finite and semi-infinite intervals with walker is given by

absorbing boundaries. These problems are more representa- L

tive of real physical situations than the case of ay walk :f f ’ g ol bt Ay At

on an infinite interval, which has received the bulk of theo- Px.t) 0 oQ(X PO t=thdxdt. (3

retical attention to date. The finite interval and the semi-

infinite system are thus fundamental building-block cases ifEquation(3) expresses the fact that the particle is either at a

the theoretical and practical understanding ofvy.gro-  turning point ¢=t") or has a probabilityp (x,t) of currently

cesses, as they are for standard diffusive random walks being at pointx while traveling between turning points. The
The structure of this paper is as follows. In Sec. Il theprobability that the random walker is momentarily located at

basic theory of Ley walks is reviewed and equations for the a given point while traveling between turning points is given

evolution for a Lery walk on a finite interval are derived. In by

Sec. Il we consider the behavior of the probability distribu-

tion near the boundaries for \xg walks on finite and semi- _ _ ” Ny’

infinite intervals. In Sec. IV the behavior of the turning point POt =2(x t)J|X| Yixax. @

distribution of the Ley walkers in the asymptotic limit of

large times is considered. In Sec. V we consider the prob- The integral equations of evolutiof2)—(4) on a finite

ability distribution of Lery walkers, particularly in the interval differ from the infinite medium equations through

asymptotic limit of large times. the existence of finite limits on the spatial integrals. The
consequence of these finite limits is that, although Laplace
Il. THEORY OF LE VY WALKS transforms can be used to simplify the temporal aspect of the

. ] ] ) ] , evolution equationgsee below, the spatial component can-
In this section we derive the evolution equations fovy.e not pe simplified using standard operator techniquedike
walks on a finite interval with absorbing boundaries. Thene infinite case where Fourier techniques are conventionally

discussion begins with the derivation of the equations of evoamployed[7,10]). After Laplace transforming2) and (3),
lution for the so calledrelocity modefor a Levy walk. the evolution equations become

In the velocity model the random walker is modeled as
moving at constant velocity between turning points where it L
changes direction. At each turning point of its motion the Q(X.S)Zf W (x=x",5)Q(X",8)dX" + 5(X—=Xo), (5)
random walker’s next turning point is determined probabilis- 0
tically by the jump distribution. Hence the probability that L
the random walker currently at a turning point will travel to p(xys):f d(x—x',5)Q(x’,s)dx’, (6)
its next turning point at a distancein a timet is given by 0

W(x,t)=(x)8(|x| —vt), ()  with

where y(x) is the jump distribution and «=|x|#. In this pa- W(x,s)= g(x)e" s @
per we only consider th8=0 case where the velocity of the
walker is independent of the step size. Without loss of genand
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o) 300 F T T T T
d(x,s)=e" S ||¢(x’)dx’. (8) -
X
Although Eq.(5) has a kernel of a convolution type it is 200 - .
defined only on a finite interval and the kernel is not of a > C
class for which exact solutions to the integral equation are X
known[13,14. For any reak, Eg. (5) is a Fredholm equa- o ;
tion of the second kind with a symmetric kernel whose so- 100¢ ]
lution can be expressed in terms of the eigenfunctions of the [
equation _
L O 1 1
¢(x,S)=>\f P(x=x",8)p(x’,5)dx’, 9) © 20 40 €0 80 100
0 X

FIG. 1. Monte Carlo simulation d?(x,t) at various times. The
curves from top to bottom at the center correspontl=t&1, 100,
150, 200, 300, 400, 600, and 800 respectively. The parameters are
B W(X)=C(a)(1+x?) %2, L=100, a=2.5, andx,=>50. Boundary

Q(x,5)=>, %IL@(X/,S) S(x" —xg)dx’, (10)  discontinuities can be seen at the edges.
i=1Ai(S)—1Jo

where 1k is the eigenvalug¢13]. The solution to Eq(5),
whensis real, may be expressed as

) ) we find
where;(x,s) are the eigenfunctions of E¢Q), and 1A, are

its eigenvalue$13]. > > 14
Appendix A summarizes the principal properties of nor- Qx,9)=C(s)=0 14

mal diffusive systems on finite intervals with absorbingf Il 0<x’<L. Th is di i t th
boundaries, which are used for comparison purposes in thit%ur?dary f(>)(rs> O' us Q(x,s) is discontinuous at the

Paper. The theorem of corresponding limits. 241 of Ref[15])
states if limy_, of(X,S) =h(s) then lim_,,f(x,t) =h(t) where
f(x,s),f(x,t) and h(s),h(t) are Laplace transform pairs.
In this section we consider the behavior of the turningThus the discontinuities iQ(x,s) at the boundaries imply
point distribution near the boundaries of an interval. In Seccorresponding discontinuities at the boundaries @¢x,t),
Il A we show that the turning point distribution has a finite for at least some times. From E(), each discontinuity in
discontinuity at the boundaries of the interval and conseQ(X,s) implies a discontinuity inP(x,s). Hence the prob-
quently that the positional probability distribution of a ran- ability distribution P(x,t) is also discontinuous at each
dom walker is discontinuous at the boundaries. In Sec. 11l Booundary for at least some times. Such a discontinuity near a
we consider the analogous result for asizavalk on a semi- boundary can only occur after a time corresponding to the

IIl. BEHAVIOR NEAR BOUNDARIES

infinite interval. fastest time for a random walker to reach the boundary from
its initial position. It is important to note the generality of the
A. Behavior near a boundary of a finite interval discontinuity result. Ifyy(L) # 0, this is sufficien{though not

. necessaryfor a discontinuity to arise. Sincg(L)#0 may
In order to deduce that the Laplace transformed tumingye satisfied by jump distributions with finite second mo-

point QistributionQ(x,S) is discontinuous at the boundary it ments, a discontinuity can occur even if the system obeys
is sufficient to showQ(x,s)=C,;>0 for all 0<x<L where  dinary diffusion. This would appear to contradict the stan-
C, is a constant. This ensures limQ(x,8)=C1>0,  gard solution to the usual diffusion equation given in Appen-

whereasQ(x_,s)=0 for x<0 anglx>L. . dix A, which shows the probability distribution is always
Considering Eq(5) and noting¥(x,s)=#(L)e"*">0,  continuous near its boundaries. In fact there is no contradic-
we find that tion since, in the derivation of the ordinary diffusion equa-
L tion, it is implicitly assumed not only that the second mo-
Q(x,s)zz,/;(L)e*SLf Q(x’,s)dx’. (11) ment of the jump distribution is finite but that it is much
0 smaller than the dimensions of the system so tf@t) and

) DL _ ) the discontinuity are negligible. For i flights the slower
SinceQ(x’,s) is continuous, nowhere negative, and ot eV-gecay in the jump distribution increases the importance of

erywhere zero fos>0, we have the boundary discontinuity for finite.
L We now turn to our numerical results. To obtain the turn-
f Q(x’,s)dx’>0. (12  ing point and probability distributions numerically, Monte
0 Carlo simulations with large ensembles of random walkers

] were performed. The Monte Carlo simulations were per-
If we defineC(s) by formed using systems where jump steps and hence time and
. space were discretized. Figure 1 shows results from a typical
C(S):¢(L)e—sLJ Q(x',s)dx’, (13) Monte Carlo simulation at moderately larde shown for _
0 times after the first walkers reach the boundaries. The dis-
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300F ' ' ' ' Zumofen and Klafter's numerical results show the relative
E (a) significance of the boundary discontinuity decreases with
[ time. Our numerical analysis confirms these conclusions, as

s0ok b shown in Fig. 2. Figure () shows a Monte Carlo simulation

showing the boundary discontinuity decreasing in time. We
note the peaks at large seen in Fig. Pa) correspond to
random walkers gix| =t, which are still moving to their first
turning point. Analytically these peaks are delta functions,
discretization leads to their finite height in the figure which is
J a measure of the relative area under them. Zumofen and
Klafter argued that a data collapse to a universal asymptotic
40 60 80 100 form should occur ifP(x,t)tY2* @1 js plotted against
X x/tY@=1)_ Figure 2b) shows this collapse, thereby confirm-
ing the validity of Zumofen and Klafter's analytic and nu-
merical analysis of the scaling behaviorffx,t). Very near
to the boundaryP(x,t) deviates from the predicted scaling
due to the boundary discontinuity, as seen by the left hand
end points of the curves in Fig(l®. The end point of each
of the P(x,t) curves corresponds to the samg with the
apparent horizontal movement due to the time-dependent
scaling of the horizontal axis. From the figure we can infer at
each value of the scaling parametBi(x,t) approaches the
scaling form. Similarly for any value of, the contribution of
10 . . . | the boundary dis_cont_inuity relativ_e to the peak }B{x,t) _
001 010 100 10.00 100.00 decreases. Despite th|§ the numencgl results are inconclusive
) /1273 as to whether for any fixed vaIL_le gfitself near the bound—
ary, P(x,t) approaches the scaling form, as the end points of
FIG. 2. Monte Carlo simulation dP(x,t) in a semi-infinite 1D  the P(x,t) curves do not appear to be approaching the scal-
system.(a) P(x,t) at various times. The curves from top to bottom ing form.
at left correspond té= 30, 50, 90, 150, respectively, with param-
etersy(x)=C(a)(1+x2) %2 anda=2.5. The boundary discon-
tinuity can be seen at=0. (b) P(x,t)t¥2*Ua=1) yg x/tta-1) gt IV. ASYMPTOTIC TEMPORAL BEHAVIOR
varioust, showing collapse to Zumofen and Klafter's asymptotic
scaling form. The curves from top to bottom at left correspond to  In this section we consider the asymptotic behavior of the
t=120, 240, 480, 1080, respectively. The dashed line gives theurning point distribution at large times and contrast it with
theoretical near-boundary scaling. The parameters #(&)  the behavior of normal diffusion processes governed by the
=C(a)(1+x*) " *? anda=25. diffusion equation. As the Laplace transformed turning point
equation(b) is the simpler to work with, we need to derive
continuity at the boundary is clearly visible in the figure. the large-time behavior @@(x,t) from Q(x,s). In Sec. IVA
After an initial increase the boundary discontinuity decayswe deduce that to a good approximation the asymptotic time
but as will be seen from the asymptotic analysisPgk,t)  dependence of th€(x,t) involves exponential decay. In
remains significant relative tB(x,t) at all times. Sec. IV B an estimate for the decay constant of this decay is
obtained using variational techniques and its scaling for large
system sizes is considered. In Sec. IV C the eigenfunctions of
B. Behavior near boundary for semi-infinite interval the turning point equation are used to estimate the time re-
For a Lary walk on a semi-infinite intervalQ(x,t) and quired_ for the system to approach its asymptotic exponential
P(x,t) are discontinuous near the boundary for at least somgehavior.
times. This can be deduced from a variation of the proof
given in Sec. lll A. For Ley flights it is similarly possible to o
show that a boundary discontinuity exists. Zumofen and A. Asymptotic time dependence
Klafter's analytic analysis of ey flights considered the ) _ _
near-boundary behavior after asymptotically large times N order to deduce the time-asymptotic behavior of the
where the discontinuity vanishes. Nonetheless for finitdUrning point distribution we require knowledge of the sin-
times the boundary discontinuity can be significant. ZumoferBularities ofQ(x;s). In Appendix B we deduce that the sin-
and Klafter's numerical analysis of Lg flights and walks ~9ularities of Q(x,s) consist of a countably infinite set of
(shown in Fig. 2 and Fig. 4 of Ref5]) at large but finite simple poles along the r_eal axis for negatszeDenoting the
times generally agrees with the large time analytic predicP0less; so that they satisfys,|<[s,|<--- we can then in-
tions around the boundary but shows deviations from thes¥ert the Laplace transform for large times giving rise to
predictions very near to the boundary. These deviations can
be understood as arising from the boundary discontinuity. Q(x,t)ace"Sl‘t (15

P(x,t)

100}

100

P(x,t) t7/®
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12x10% . . . . function (p. 63 of Ref.[13]). The Rayleigh quotient is equal
4 to the first eigenvalue where the estimate for the first eigen-
1.0x10 " ] function used is exactly the true first eigenfunction. In this
3 subsection the normal diffusion first eigenfunctioh?) is
8.0x107 ¢ 1 used to approximate the first eigenfunction of they ealk.
6.0x103[ ] The approximation made is likely to be most accuratexas

approaches 3 from below, since far>3, the second mo-

Q(x,t)exp(ls,It)

4.0x105L ] ment of /(x) becomes finite and for asymptotically large
such a system will undergo normal diffusion for larige
2 0x10° L ] The Rayleigh quotient is given by
0 1 . L (L —ox—Y|ai ]
0 20 40 80 80 100 fo Jo W(|x—y|)e S*Visin(mx/L)sin(wry/L)dxdy
X = 0
. o f sir?(x/L)dx
FIG. 3. The scaled turning point distributio@(x,t)e*/silt at 0
varioust. The curves from top to bottom at the center correspond to (16
t=20, 40, 60, 100, 160, 260, 360, 460, respectively, fgx . . . . .
=C(a)(1+x)~*2, L=100,a=2.5, ande:SO.p Y, ) After changmg variables and performlng the mtggratlons
over (x+Yy) in the numerator and overin the denominator,

for t—oo. This result is analogous to the dominance of theV® obtain

first eigenfunction in the time asymptotic behavior of a sys-

tem undergoing normal diffusiofsee Eq(A2) in Appendix L u

Al R=2f zﬂ(u)e‘le—E
In Fig. 3 we show numerical results for the scaled turning 0

point distributionQ(x,t)e*!s1t at various times, calculated

by Monte Carlo simulations. If E415) correctly predicts the 1. u

asymptotic behavior 0Q(x,t), the graphs ofQ(x,t)e™ st * ;sw{w( 1= E)

should coincide at large times. Figure 3 thus demonstrates

the asymptotic behavior of the system is accurately described

by the exponential decay given in E45). Note thatin order At s=s;, the Rayleigh quotient approximates,=1

to construct Fig3 a numerical value fdis;| was required. In ~ from below. By noting the Rayleigh quotient is a decreasing

this paper accurate positions for the singularigsire ob- ~ function of s, we can determine a lower bound approxima-

tained through numerical inversion of E@). Fors<1 the  tion for s;, by equating the Rayleigh quotient to unity and

numerical inversion is performed using the Nystrom methodolving fors;. Numerical simulations indicate for larde,

with Gauss-Legendre quadratdtes]. Wheres does not sat-  |S1|<1, so assumings|<1 one hase™*"=1-su, and we

isfy s<1, the product-Nystrom methdd6] is used instead. find

The use of different methods of inversion for different re-

gimes ofs is required since the Nystrom method converges L

much slower than the product-Nystrom method if the kernel 1—2f B(u)du

of the integral equation to be inverted has a sharp disconti- 0

od

}du. (17

oo L . S~ , 18
nuity in its derivatives. Whersis not small the kernel of Eq. ! L (18)
(5) has a sharp discontinuity in its derivatives wherey. —2 o uB(u)du

B. Estimated decay constant for exponential decay u u 1 u
This subsection estimates, the decay constant for the B(u)=y(u) (1— E) COS{ |t sin WE”- (19

principal eigenfunction, using a Rayleigh quotient variational
technigue. The Rayleigh quotient provides a lower bound on In Appendix C we show that the estimate fer can be
the largest eigenvalue based on a given estimated first eigeaxpressed in terms df as

1/(a—1)+_22 a; /(i +1—a))A/L“‘1—22 a;®,(0)/L’

S]_ = (20)

®,(0)[A/(2— a)]l/L“‘1+22 a{[Al(i+2—a)]1L 2= d;, ,(0)/L"}

From Eq.(20), the estimated asymptotic scalingssgfat asymptotically largé are found to be
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L™ 2[1+o(1/Lmnle~32)], a>3 100.0 ' ' ' ' ]
. a) 1
s%{ LY e[1+o(mnis-alla=2Dy] 2<q<3 (@)
LY 1+0(2/L27 ey 1<a<2.
' 10.0F + 1
(21) - ++ 7 z
5_l | ] u u a
We note that a number of other approximations can be made @ A a a
for the true first eigenfunction of the system. However, pro- 1.0F ¢ . . 3
vided the first eigenfunction can be expressed as a uniformly ]
convergent power series and at largie approaches an
asymptotic form expressible as a uniformly convergent 0.1 . . . .
power sgries ip(, it can pe show_n that the scaling S)lf in_ 0 200 400 600 800 1000
each regime will agree with the first term of the scaling given L
in Eq. (21), although the order of the correction terms may
differ. [This result is subject to an additional assumption re- 10f ' ' ' ' ]
quiring the asymptotic form does not cause a term analogous I (b) ]
to the bracketed term in the numerator of E2P) to vanish] : . S .

The scalings;=L 2 for a>3 is expected since the jump
distribution possesses a finite second moment in this regime

-
and the random walk can be approximated by a normal dif- - * * ‘
fusive random walk for largé. (see Appendix A Thes; =
« L1~ @ scaling for 2< @< 3 demonstrates a fundamental dif- . " " .
ference between vy walk processes and normal diffusive
processes, even at asymptotically large times. This® + + +
scaling is only accurate for very largebecause the relative 1 , , , ,
size of correction terms decreases no faster thah°. We 0 100 200 300 400 500
consider thew<<2 scaling separately below. L

In order to test the scaling for the decay constants, nu- FIG. 4. The scaled decay constantlvin various regimes(a)
merical inversion of the Laplace transformed turning point|s,|L*~1 ysL for 2<a<3 with #/(x) = C(a)(1+x?) "2 The sets

equation(5) was performed. Figure 4 compares the numeri-of points correspond te:=2.75 (crossey 2.5 (squarey 2.25 (tri-
cally obtained values of; with the first order scaling given angles, and 2.05(diamond$. (b) |s;|L vs L for 1<a<2 with
in Eq. (21) by dividing s, by the leading term on the right of (x)=C(a)(1+x?)~ %2 The sets of points correspond @
Eg. (21) in each case and plotting the results agalnsin ~ =1.05 (diamond$, 1.25 (triangleg, 1.5 (squarey and 1.75
each case, the results appear to approach a constant value(@r@sses respectively.

L increases, consistent with E@1). As expected from Eq.
(21) the correction terms are significant wheleis only
moderately large, so the results in Fig. 4 only asymptoticall
approach constant values. As H@1) indicates, for X«
<3, convergence telle_“ is fastest fora= 2.5 and slow- C. Time to approach asymptotic behavior
est neara=2 or a=3. Figure 4a) is consistent with this
analysis as the convergence to asymptotically constant vag—e
ues is fastest foir nearer toa= 2.5 (where the results follow

less, thes;xL~! asymptotic scaling for £a<2 is still
observed in Fig. &), since this scaling is insensitive to the
yshape of the estimated eigenfunction, as noted earlier.

In this subsection the decay constant corresponding to the
cond eigenvalue of EQ) is considered. The second de-
) ; - L cay constans, provides a measure of the inverse of the time
an almost horizontal line SlmllarIXlEq. (21) indicates for reguired for tzhg system to approach its asymptotic behavior
1<a<2 that convergence te, <L~ is fastest nea=1, (i the time after which its behavior is dominated by the
which is consistent with Fig. (). first eigenfunction The variational principle for obtaining
An estimate ofs; at moderately large. values can be the second eigenvalue analogously to the method used in
obtained analytically by computation of the coefficients insec. |v C is known as the min-max principlp. 63 of Ref.
Eq. (20) or semianalytically by performing two numerical [13]). The min-max principle states the second eigenfunction
quadratures in Eq18) using a specified form ofs(x). Our  maximizes the Rayleigh quotient over the set of functions
numerical computations show that the fast semianalyti@rthogonal to the first eigenfunction. The Rayleigh quotient’s
method for obtainings; agrees with the more time- maximum value over this set of functions is the second ei-
consuming method of numerical inversion of the turninggenvalue. Since the first eigenfunction is not known exactly,
point equation(5) to better than 15%, for moderately larje  the use of the second normal diffusion eigenfunction as an
and 2<a<3. As expected, estimating; using the normal approximation to obtain the second eigenvalue will provide
diffusion first eigenfunction is most accurate farnear 3. only an estimate of the second eigenvalue rather than a rig-
For 2.5 a<<3, the relatively small error<<5%) introduced orous bound. This is due to the fact that the second normal
by this approximation indicates the asymptotic shape of theliffusive eigenfunction is not orthogonal to the first eigen-
turning point distribution is closely approximated by its nor- function for the Lery process so that the min-max principle
mal diffusion counterpart. This error steadily increasestas does not strictly apply. Using the second normal diffusive
decreases, indicating that the approximation using the norigenfunction as an approximation to obtain an estimate for
mal diffusion eigenfuction breaks down far<2. Nonethe- s, in the same way that; was estimated in Sec. IV C yields
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12JLDd D(u)= lu 2u 1'2u
. (u)du (u)=t(u) —jeos 27 +Esm T ||
_ (22) (23
—Zf uD(u)du
0 and hence
|
(1/a—1+2 bi/i+1—a|A/L* 1= bd(0)/L
“~, “~,
' ' , (24

Sy~

where theb; are now given by
> biu'=1-(1-u)cog 2mu) — o—sin(2mu). (25
i=2

The scaling of, for largelL is the same as fa&; though the
proportionality constants differ. For moderately ladgand

2<a<3, our numerical studies indicate the decay constant

s, can be estimated analytically or semianalytically in the
same way as;, with similar accuracy to the; estimates. It
should be noted though, since the estimated second dec
constant is not a bound but only an estimate, errors in th
estimated value o$, include both underestimates and over-
estimates.

As noted in Appendix A, the ratio of,/s; for normal
diffusion is 4. By comparing the ratio of the estimatessof
ands, given in Eqs.(20) and(24) for 2<a<3 we estimate

(26)
1/(a—1)+_22 a/(i+1-a)

Numerical evaluation of the series in E@6) for 2<a<3

shows that the ratio is less than 4 and is a decreasing func-

tion of . Convergence at moderately larfydo this ratio is
expected to be very slow for the same reasons that conve
gence to the asymptotic forms sf ands, was slow due to
the correction terms given in EQR1). For o> 3 the ratio of
Egs.(20) and(24) yields

(27)

as is expected since the system behaves in a normal diffus
manner in this limifcf. Eq. (A4)].

In order to study the ratis, /s; at moderately large, the
jump distribution ¢(|x|)=C(a)/(1+x%)*? was selected.
[C(a) is the normalization constant and is given BY«)
=1/B[1/2,1/2(a—1)], whereg is the beta function, i.e., Eu-
ler’s integral of the first kindl Figure %a) shows the numeri-
cally calculated ratios of; ands,, relative to the semiana-
lytic estimate obtained from numerical quadrature of Eqs

®,(0)—[A/(2— a)]l/L""l+__22 bi([A/(i+2—a)]1Le 2—d,,,(0)/L)

W

(18) and(22). As before, our estimates are most accurate for
2.5<a<3, whereas the accuracy decreases substantially as
a decreases toward 2, as can be seen in the resulta for
=2.05 in Fig. %a). Nonetheless the general trend shows that

4.5

40F..

ay
e

&
~ 3.5
[%2]

3.0

250
0.00 0.02

0.04 0.06 0.08 0.10
1/L/2

(b)

r_

0.00 0.02

0.04 0.06 0.08 0.10
1/L1/2

FIG. 5. Ratio ofs; ands, for variousL and a«. The symbols
denote the numerically calculated values. The dotted lines represent
e . . . )
sémianalytic estimates derived from numerical quadrature of the
estimateq18) and (22) for s; ands,. The dependent axis fdg)
has been scaled to-“2in order to show the detail of the semiana-
lytic estimates. The jump distribution for these simulations is
#(x)=C(a)(1+x?) 2, (a) The points area=3.25 (triangles,
3.0 (plussey 2.75 (inverted triangles 2.5 (squarey 2.25 (dia-
monds, and 2.05crossek (b) Same aga) for «=1.75(triangles,
1.5 (squarey and 1.25(diamond$, except that no semianalytic es-

timates are available forda<2.
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t
FIG. 6. Survival probability®(t) vs t for a=2.5, y(x) FIG. 7. Survival probabili_ty@(t) with_first decay tzer_ngl(t)
=C(a)(1+x?) %2, L=100, andx,=>50. removed. Parameters are=2.5, (x)=C(a)(1+x%)~" %% L
=100, andxy=50.

for moderately large interval sizes, the raig/s, decreases

with decreasingr and approaches its asymptotic value onlytypical Monte Carlo simulation, clearly showing exponential
slowly. It is thus concluded at moderately large times thedecay at large times. The decay constant for the exponential
contribution of the second eigenfunction is more significantdecay in Fig. 6 agrees with the independently calculated
for 2<a<3 than for normal diffusion since its exponential value fors,, obtained through numerical solution of E§).
decay is(relatively) slower. For K a<2 we do not possess In order to determine the next term that contributes to the
an analytic estimate fa®; ands, only the asymptotic scaling survival probability, we note when the second eigenfunction
given in Eqg.(21). Consequently we can make no analytic component ofQ(x,t) is closely approximated by its normal
prediction relating to the ratis, /s, in the range X a<2.  diffusion counterpart, the second eigenfunction is antisym-
Figure %b) shows numerically calculated ratios §f ands, ~ metric and does not contribute to the survival probability
at moderately largd. Unlike for 2<a<3, the ratios,/s; despite its contribution t®(x,t). Thus, subtracting the con-
may be greater or less than 4 foxkv<<2 and hence the tribution of the first decay term®,(t), from the survival
relative contribution of the second eigenfunction at moderfrobability isolates the next contribution to the survival
ately large times can be less significant than for normal difprobability; i.e., exponential decay at a rate given by the
fusion (for 1<a<2 and neaw=2) but becomes more sig- third decay constant, as is confirmed in Fig. 7. The decay
nificant as the ratis, /s, decreases with decreasing Thus ~ constant observed in Fig. 7 is in agreement vehcalcu-
s,/s; is decreasing in both the=2a<3 and l=a=<2 re- lated independently through numerical solution of ES).
gions, although since,/s; is greater ar=1.75 than atx  The deviation from exponential decay fioz 120 in Fig. 7 is
=2.05, there is either a continuous or a discontinuous indue to inaccuracy in the estimation of the subtracted first

crease irs,/s; for some part of 1.75 a=<2.05. decay term. . _ .
By considering an inner product &f(x,t) with an esti-
V. PROBABILITY DISTRIBUTIONS mate for the second eigenfunction the contribution of the

. _ . _ ~ second decay constant to the evolution Rfx,t) can be
Having considered the asymptotic behavior of the turningdemonstrated as shown in Fig. 8. The decay constant of the

point distribution in Sec. IV we now consider the asymptoticexponential decay observed in Fig. 8 agrees witfcalcu-
behavior of the probability distribution itself. Equatio(®

and (8) connect the probability distribution with the turning

. S b . - 1.0 ! ' '
point distribution. Sinced(x,s) possesses no singularities
for finite s, from Eq. (6) it can be seen tha®(x,s) has the =
same singularities for finite asQ(x,s). HenceP(x,t) will >
have the same exponential decay behavior as th@t(®ft), k
with s; ands, playing similar roles. For example <
c
P(x,t)ce sl (28) 2
ast—oo, If the probability that a random walker is still in the E
interval after a time is termed the survival probabilit§ (t), o
Eq. (28) predicts o1
L 0 50 100 150 200
G)(t)=j P(x,t)dx, t
0
FIG. 8. Inner product oP(x,t) with an estimate of the second
ce st for t—oo, (29 eigenfunction(P(x,t)|sin(2mx/L)), demonstrating the contribution

of the s, term to the evolution of(x,t). Parameters ara=2.5,
Figure 6 shows the survival probability obtained from a#(x)=C(a)(1+x? ~*?, L=100, andx,=25.



5390 P. M. DRYSDALE AND P. A. ROBINSON PRE 58

1500 ' ' 0.15] ' ' ' '
- RN (a)
I RN
1000 1 0.10F \ 1
= = I 7 \Y
5 5 ¥/ \§
E-_/ o | /:7‘ \:\
500 - 0.05F # A
: ¥ %
| L \:‘.\
L b, \
| /ﬁ > | , V'
0 —~1= \‘»\~—| 0.00 I I I I
0 200 40 80 80 100 0 20 40 60 80 100
X X
FIG. 9. Monte Carlo simulation d?(x,t) at smallt. Parameters 0.15] : : : :
are (x)=C(a)(1+x%) "2, L=100, «=2.5, andx,=50, t=10 I (b)
(solid), 20 (dotted, 30 (dashegl and 40(dot-dashen F e
. . . 010 7 - - NS
lated independently through numerical solution of Eg). ~ P RN
The deviations from exponential decay visible in Fig. 8 are X };"/ N
due to the inner product not completely excluding the con- e K
tributions of the other decay terms R{x,t) because we use 0.051 ]
only an estimate for the second eigenfunction.
We consider the spatial variation B{x,t) next. For time
periods less than the period for the fastest random walker to 0.001 , , , ,
reach a boundary(x,t) evolves identically to the .'IAe/ 0 20 40 60 80 100
walk in the infinite 1D system, which was studied by x
Zumofen and Klaftef10]. This differs from a Ley flight on _ ) _
a finite interval whereP(x,t) at no time evolves identically FIG. 10. Time-asymptotic shape fd?(x,t) at variousL for

to the Lavy flight in the infinite 1D system. A typical Monte #(X)=C(a)(1+x?) "%, 1L =100 (dashegi 200 (dotted, 1600

Carlo simulation for a Ley walk on a finite interval at early ~(dot-dashedl The normal diffusion first eigenfunctiof2) is in-
times is shown in Fig. 9. It should be noted that the peaks off'ded for comparison in each cag@lid curve. (a) a=2.5. (b)
the leading edges oP(x,t) are due to random walkers a=1.75.
whose first step is very large and are still traveling to their
first turning point. The area under the peaks diminishes irpseudoeigenfunction at largefor 2<«<3 and the normal
time and the peaks eventually leave the systfigure 1  diffusion eigenfunction, so it may be difficult in real physical
shows the evolution oP(x,t) after the peaks have left the systems to distinguish experimentally betweervy evalks
system] and normal diffusion, by considering only the time
For times t>1/s,, P(x,t) approaches an asymptotic asymptotic shape oP(x,t). For «a<2 [see Fig. 1(b)] it
shape sinc€(x,t) is dominated by the first eigenfunction in appears considerably less likely that the pseudoeigenfunction
this regime. The time asymptotic spatial form f@(x,t) is  approaches the diffusive one.
related to the first eigenfunction 6¥(x,s) at s=s, through We now note some general properties of the second pseu-
Eq. (5). Strictly speaking the spatial component Bfx,t) doeigenfunction. For 2 <3 the second eigenfunction for
decaying at a rate given by the first decay constant is not ahormal diffusion is a close approximation to the second
eigenfunction since it is not the solution of an eigenvalue‘pseudoeigenfunction,” but asx approaches 2 at moder-
equation, but since it corresponds to the first eigenfunction imtely largel, this approximation deteriorates and the second
normal diffusion; we shall refer to it as the first “pseudo- pseudoeigenfunction may even differ in the number of nodes
eigenfunction.” Figures 1@) and 1@b) show the first pseu- it possesses compared to the second eigenfunction for nor-
doeigenfunction component d®(x,t) for «=2.5 ande  mal diffusion [13]. This behavior continues for 1a<2
=1.75 at varioud.. We note some general properties of theeven at very largé.. Although this might at first appear a
first pseudoeigenfunctions observed in numerical analysisurprising result it is consistent with the fact that fox &
and which are also evident in Figs. (@ and 1@b). For a <2 the integral operator in Eq9) is not “oscillatory” at s,
given L, the size of the boundary discontinuity in the first in the sense of Refl13], even for largeL. Only for an
pseudoeigenfunction increases with decreasing/Vith in-  “oscillatory” operator is it guaranteed that theth eigen-
creasingL the size of the boundary discontinuity decreasedunction will have fi—1) nodes. Figure 1&) shows an ex-
and at least forw>2 it can be shown analytically that the ample of the second pseudoeigenfunctionder 2.5, where
boundary discontinuity vanishes ésbecomes large. The it is similar in form to the second eigenfunction for normal
asymptotic shape of the pseudoeigenfunction at largenot  diffusion. Figure 11b) shows an example of a second pseu-
precisely known, but our numerical analysis cannot rule outloeigenfunction, which has two nodes rather than one. Note
an approach to the normal diffusion first eigenfunction forthat this pseudoeigenfunction would contribute to the sur-
largeL for a>2. There is a close similarity between the first vival probability ®(t) because it is symmetric, rather than
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significant even at asymptotically large times.

(i) At asymptotically large times the \g walk probabil-
ity distribution decays exponentially in magnitude on the in-
terval, as does the total survival probability that random
walkers remain on the interval. This is a consequence of the
dominance of the first eigenfunction of the turning point dis-
tribution at large times.

(iii) For a jump distribution that satisfieg(x) ~ x|~ for
large |x|, the scaling of the exponential decay constant was
estimated as; L1 ¢ for 2<a<3 ands;*xL ! for 1<«
< 2. These scalings show a fundamental difference between
Lévy walks and the asymptotic time behavior of normal dif-
fusion processes, which hasgxL 2.

(iv) As in normal diffusion, the decay constant corre-
sponding to the second eigenfunction provides an estimate of
the time before the system reaches its asymptotic regime.
Analysis of the ratio of the first and second decay constants
indicates that for 2 <3 this ratio is smaller for Ley
walks than for normal diffusion, so that at moderately large
times the contribution of the second eigenfunction is more
significant since its exponential decay is relatively slower.
For 1<a<2 the ratio can be larger or smaller than for nor-
mal diffusion, but decreases with decreasing

(v) The high degree of similarity between the first eigen-
functions of the Ley walk and normal diffusion for large
and 2< «<<3 suggest it would be difficult to experimentally
differentiate such a vy walk on a finite interval from nor-
mal diffusion by considering only the differences in the

FIG. 11. The second pseudoeigenfunctionRgk,t) for y(x) asymptotic shape of the probability ,distribution. The most
=C(@)(1+x3) "2 L=800 (dashedl The normal diffusion sec- Characteristic difference between theviewalk (for 2<a
ond eigenfunction(A2) is included for comparison in each case <3 and large.) is the difference in the scaling of the decay
(solid curve (a) @a=2.5.(b) «=1.75. constant with system size. Forda<2 the first eigenfunc-

tion at moderately largé differs significantly from its nor-
antisymmetric. This pseudoeigenfunction cannot approachal diffusion counterpart, having large boundary disconti-
the diffusive second eigenfunction at larigeinless the pseu- nuities relative to its overall size and so it is consequently
doeigenfunction changes its topology from symmetric to anflatter than the normal diffusion first eigenfunction. The sec-
tisymmetric at some large. ond eigenfunction, for largk and 1<a<2 can differ from
the normal diffusive case so significantly that it can have
different symmetry properties and a different number of
nodes than the second eigenfunction of the normal diffusive

We have studied the behavior of \ye walks on finite ~ System.
intervals with absorbing boundary conditions, considering in
particular the near-boundary and asymptotically large time ACKNOWLEDGMENT
behavior using analytic, Monte Carlo, and numerical inver- , ,
sion techniques. vy walks of this type are fundamental _ 1hiS work was supported by the Australian Research
building blocks in the understanding of e processes in Council and the Australian Postgraduate Award Scheme.
physical situations, where boundaries are present.

The main results of this paper are as follows: APPENDIX A: REVIEW OF KEY RESULTS FOR

(i) Initially the Levy walk on the finite interval evolves in NORMAL DIFFUSION ON A FINITE INTERVAL
the same way as for the infinite system. For times shorter
than the period for the fastest random walkers to reach '[hgi o
boundariesP(x,t) possess spikes at its edges correspondin%bi
to the random walkers still traveling to their first turning
point. Eventually these spikes leave the system. After th
spikes have left the system the probability distribution for 5
Levy walks is discontinuous at the boundaries for both finite IP(x.1) =D 9" P(x.1)
and semi-infinite systems. For the finite system, this can sig- ot ax?
nificantly affect the system description at moderately large
interval sizes, where the boundary discontinuities can bavhere D is the diffusion coefficient. For a finite interval
relatively large. For a Ley walk on a finite interval the size [0,L] with absorbing boundaries, EGA1) is solved subject
of the discontinuity relative td®(x,t) need not become in- to the conditionsP(x,0)= 8(x—Xg) and P(x,t)=0 for x

—0.3E . . .

—0.3E . . . ]
0 200 400 600 800

VI. SUMMARY AND CONCLUSIONS

In this Appendix we review the theory of normal diffu-
n on a finite interval with absorbing boundaries. The prob-
lity distribution for normal diffusion on a finite interval is
given by the solution of

: (A1)
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<0 or x=L. The derivation of Eq(Al) requires not only Sincey(y) is normalized on the intervaH«,x), Eq.(B2)

that the second moment of the jump distribution be finite butdemonstrates that singular points @fx,s) can exist only
also tends to zero relative 1 [1,17]. The solution of Eq. for negatives where the largest eigenvalue can be greater
(A1) can be expressed in terms of its eigenfunctionflas than unity. For increasingly negatigthe bound on the larg-
est eigenvalue increases. We assume thestecomes in-
creasingly negative, each eigenvalue increases and gives rise
P(x,t)= Z Agsin(narx/L)e ™!, (A2)  to a singularity when it is equal to unity and hence a count-
n=1 ably infinite series of singularities corresponding to eigenval-
ues equal to unity exists for negatige This assumption is
plausible since, as we note below, each of the singularities of
Q(x,s) are isolated and there are at most a countably infinite
set of singularities. Further fo>3, P(x,s) and Q(X,s)
have a countably infinite set of singularities. Since a continu-
ous change inv will yield a continuous change to the singu-
larities on physical ground®2(x,s) and Q(x,s) will thus
also have a countably infinite set of singularities for a finite
range ofa with a<<3.

At this point it remains possible th&@(x,s) possesses
4., (A4)  singularities not on the real axis and we eliminate this pos-
sibility in the next few paragraphs. Sin€¥x,s) is defined
. . - . off the real axis by analytic continuatioQ(x,s) satisfies
. Since Lay processes are more easily discussed pnmanl;tq_ (5) for complexs. Thus the Fredholm alternative theo-
in Laplace transfor_med form, we note for that the Laplacerem guarantees that complex singularitieifx,s) can only
transform ofP(x,t) is exist where Eq(9) has an eigenvalue equal to unity for a

o 1 complexs. Thus we need to obtain thoséor which Eq.(9)
_ - - has an eigenvalue equal to unity.

P(x.s) ngl A”SIn(nWX/L)er S (AS) It can be shown the set of values sf(in general both
complex and realfor which Eg.(9) has an eigenvalue equal
to unity is closed and discrete so that each singularity of
Q(x,s) is isolated and there are only a countable number of
these. The proof of this relies on spectral theory of analytic

In this Appendix we deduce the positions and propertiedunctions into Banach algebras, the details of which can be
of the singularities ofQ(x,s). This enables us to determine found in Chap. 3 of Ref{18], especially the discussion re-
the asymptotic properties @(x,t) at large times. lating to Theorem 3.4.26 in this reference. Sif@gx,s) has

The Fredholm alternative theordrh3] guarantees a Fred- @ countable infinite set of singularities on the real axis there
holm equation of the second kind such as &y possesses a is at most a finite set of isolated complex singularities. It is
unique solution except where its homogeneous eigenvalugssumed that the isolated singularities are not essential sin-
equation has a nontrivial solution. The=1 form of Eq.(9)  gularities.
is the corresponding homogeneous eigenvalue equation for Since Q(x,s) is real for reals and defined by analytic
Eq. (5. HenceQ(x,s) will possess singularities for those continuation to the remainder of the complex plane, the com-
values ofs for which Eq.(9) possesses an eigenvalue equalplex singularities ofQ(x,s) are symmetric about the real
to unity. For each real value of the kernel of Eq.9) is  axis. If Q(x,s) possessed a complex singularity such that
symmetric and bounded. Hence for redhe integral opera- Re(s;)>0, this singularity would contribute a residue with a
tor for the equation is self-adjoint and E@) has at most a component that grows exponentially with time. The non-
countable set of eigenvalues, which if they approach a poinghysicality of this behavior leads to the conclusion that
as a limit, can only approach zero as a limit point. Here weQ(X,s) cannot have any complex singularities with Bg(
assume that Eq9) has a countably infinite set of eigenval- >0. Considering complex singularities such that Reg;)
ues. =<0, and||m(sj)|>0, we note that each pair of such complex

For each real value of the kernel of Eq(9) is positive  singularitiess; ands;" would contribute an oscillatory term
everywhere and the integral operator is thus termed positivien the Laplace inversion of the form
itself. For such a linear operator the eigenvalues satisfy

o

wheres,=Dn?#?/L2. We note a number of properties of
this probability distribution{i) From Eq.(A2) it can be seen
that P(x,t) is always continuous at the boundariés) For
asymptotically large times we find

P(x,t)ce St (A3)
(iii) The ratio of the first two decay constants is given by

S2
S,

APPENDIX B: SINGULARITIES OF THE TURNING
POINT DISTRIBUTION

Regs;+s})oG;(x)tMe IR¥S)ltcog Im(sj)t], (B3)

1 1 L
<< maxf K(x,y)dy, (B1)
NN

0
XLl whereG;(x) is the spatial term associated with the singular-

ity. Since each of the possible complex singularities is iso-

where 1\; are the eigenvalues and\}/is the first eigen- lated, we can sum the singularities=a, +bi to give

value[13]. Hence we have

1 L/2
Vo f y(lyDe™dy. (82) Qx> Gj(x)tMe [licogbit) +F(x.t),  (B4)
1 —L/2 ]
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whereF(x,t) is the contribution from the singularities on the noting thatz,/;(|x—y|)e*51|xfy‘ has positive upper and lower

real axis and thus is not oscillatory. Sin@é€x,t) is a turning  bounds orfO,L] and applying integral inequalities, the crite-

point distribution for a diffusionlike process, on physical rion in Eq.(B9) can be reformulated so that it is sufficient to

grounds S Q(x,t)dx must be a monotonic decreasing func- show there is no nontrivia(x) that is symmetric or anti-

tion of time. But this implies théo; are all zero, otherwise symmetric onf0O,L] and satisfies

oscillatory behavior at the beat frequencies will arise among L

the terms inf Q(x,t)dx. It is thus concluded that all singu- _ _

larities of Q(x,s) must lie on the real axis. jo ( JO |x y|¢(x)dx) ¢(y)dy=0. (B10)
Now that the positions of the singularities have been de-

termined, it will be shown that each of the singularities is aBy noting that the Picard equation for an interval, given by

simple pole. Denoting byg; a singularity ofQ(x,s) lying on .

the negative real axis, we consider the eigenvaluas, dd f _ _

eigenfunctions in a neighborhood sf. If we restrict our 0 x=yld(y)dy=f), (B1D

attention to a neighborhood that lies on the real axis, afie

can expand the eigenvalue and eigenfunction in perturbatiohas a solution that must satiskp(x) =f"(x)/2 [14], Eq.

series in the usual way since the kernel is symmetric in thi$B10) can be reformulated as

neighborhood. This yields

oo

2 s hi0=2 s‘xifLw<|x—y|>ef<sj+s>|xfy|
i i=0 0

1=0

fo”(x)f(x)dx=0. (B12)
0

Integrating by parts then yields

X2 ). B5) f’(L)f(L)—f’(O)f(O)—JOL[f’(x)]zdx=0. (B13)

Equating linear terms is yields Since ¢(x)=f"(x) is symmetric or antisymmetric on the

L interval[OL], andf’(x) also must have the same symmetry
d1(x)= —)\oJ Y(|x—yDe Sk Yx—y|go(y)dy or antisymmetry and thus E¢B13) requiresf’(x) to vanish
0 on [OL] and hencep(x) to vanish also. Thus there is no

L nontrivial ¢(x) satisfying Eq(B9) with appropriate symme-
+)\1¢0(X)+7\oj P(Ix—yhe sk Vgy(y)dy. try. It has thus been proved thag does not vanish in the
0 neighborhood oF; .
(B6) At every singularity we conclude that the eigenvalue can

. . . , be expressed as
We now consider whethex; vanishes in the neighborhood

of any of the singularities. Fax,; to vanish the equation A(S)=1+(s—s)N + 0[(S_Sj)z] (B14)

for real s where\ ; #0. For reals, Eq. (10) becomes

L
¢1(X)=>\ofo W(|x—yl)e s Yg, (y)dy
?i(X0,S) #j(X,9)
Ni{s—sj+ol(s—s)%]}

Q(x,8)~ (B15)

L
o | ux=ye I Ix-yl oty

(B7) By analytic continuation, EqB15) extends to comples in
the vicinity of s; and each singularity is thus a simple pole.
must have a solution fap;(x). The Fredholm theorenj4 3] The conclusion of this Appendix is that the turning point
state if Eq.(B7) has a solution it is necessary that distributionQ(x,s) has a countably infinite set of singulari-
. ties for negatives which are all simple poles.
)

L
o, wilx-yhe < Vix-ylany)dy

APPENDIX C: SCALING OF DECAY CONSTANT

X ¢ho(X)dx=0. (B8) WITH SYSTEM SIZE
We will prove that there is no nontrivial functios(x) that In this Appendix the scaling for the estimated decay con-
is symmetric or antisymmetric of0,L ] and satisfies stant with system size is obtained by considering @8).

LrL If we denote the numerator of E¢L8) by N we find
[ | stix=yhe s x=y|gix) gy)dxay=o

L L
(B9) N=1—2J’0 w(x)dx—zfo P(X)G(x)dx, (Cy
This is sufficient to show that there is no solution #y(x) 1
and that\; does not vanish sincég(x) is an eigenfunction =( X X)L f) _
and so is either symmetric or antisymmetric [dhL]. By GOo=|1 L co L * Wsm n L €2
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AssumingL is sufficiently large thaiy(L)=<L ™%, we define 1 * a Y (0)
A through the relationy(x) = Ax™ ¢ for largex. Hence N= a—l 2 1o a) a1 Z,
2A (Co)

N=1-|1

L Soa
2f (X)X, —xdx,
a—1 0 i=2 L' where the®;(0) are constants that depend on the small
(C3)  behavior ofy(x).
We now consider the denominator of E48), which we

where thea; are the Taylor coefficients, defined by denote byD. We find

S 1 ® :
izzz q;u :1_(1_U)CO$7TU)_ ;S”’K’ﬂ'u)- (C4) D= _ZJOLw(X)XdX—i_ZJOLw(X)X; ai%dx. (C?)

Defining @;(x) through the relatiomP;(x) = [ ¢(x)x'dx, we

then have Using the same notation as in HE6) then yields
* 2A
A 1 al D=——— ——+20,(0
N=— LH+2§2 SLOL =20 (€5 7—a o1 2210
AssuminglL is sufficiently large thaty(L) =L ~*, asymptoti- +§: a 2A 1 29.4(0) 8
cally we find ®;(L)=C;+AL "1~ %/(i+1—a). Without = i+2-a a2 L' '

loss of generality we can defiri@ =0, which corresponds to
assigning an arbitrary value to the integration constant fotJsing Egs.(C6) and(C8) in Eq. (18) we find that the decay
®(x) in the definition®;(x) = [ ¢(x)x'dx. This yields constant for the asymptotic exponential is given by &4).
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