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Lévy random walks in finite systems
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Lévy walks on finite intervals with absorbing boundaries are studied using analytic and Monte Carlo
techniques. The integral equations for Le´vy walks in infinite 1D systems are generalized to treat the evolution
of the probability distribution on finite and semi-infinite intervals. In particular the near-boundary behavior of
the probability distribution and also its properties at asymptotically large times are studied. The probability
distribution is found to be discontinuous near the boundary for Le´vy walks in finite and semi-infinite systems.
Previous results for infinite systems, and a previous scaling for semi-infinite systems, are reproduced. The use
of linear operator theory to solve the integral equations governing the evolution of the Le´vy walk implies that
the probability distribution decays exponentially at large times. For a jump distribution that satisfies
c(x);uxu2a for largeuxu, the decay constant for the exponential decay is estimated and found to scale at large
L asL12a for 2,a,3 andL21 for 1,a,2, in contrast toL22 for normal diffusion. For 2,a,3, the ratio
of the decay constants of the first and second eigenfunctions is less than 4 for largeL, so that the second
eigenfunction is relatively more important in describing the system’s large time behavior than the correspond-
ing eigenfunction for normal diffusion. For 1,a,2 the ratio of the decay constants may be greater or less
than 4. The shapes of the eigenfunctions for the Le´vy processes are obtained numerically and the strong
similarity between the first eigenfunction and its normal diffusion counterpart for 2&a,3 indicate that it
would be difficult experimentally to distinguish such a Le´vy process on a finite interval from a normal diffusive
system by considering only the asymptotic shape of the probability distribution. Fora&2 we observe signifi-
cant differences between the first and second eigenfunctions and their normal diffusion counterparts. For
moderately large intervals, the first eigenfunction is flatter with large boundary discontinuities while the second
eigenfunction can differ from its normal diffusion counterpart in both its symmetry properties and number of
nodes.@S1063-651X~98!09210-1#

PACS number~s!: 05.40.1j, 02.50.2r
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I. INTRODUCTION

Diffusion processes are commonly modeled using rand
walks. A simple model for a diffusive random walk involve
a walker that steps at regular time intervals with a speci
probability distribution of step lengths~known as the jump
distribution! that is independent of the current position of t
walker. If the jump distribution possesses finite first and s
ond moments, the evolution of the random walker’s po
tional probability distribution can be described by t
Fokker-Planck equation for diffusion with a constant diff
sion coefficient@1#.

Where a random walker’s jump distribution does not p
sess a finite second moment, the central limit theorem ca
be used to describe the walker’s motion in terms of a dif
sion equation@2,3#. The motion of a random walker tha
steps at regular time intervals with a jump distribution n
possessing a finite second moment is known as a Le´vy flight
@4# ~alternative more restrictive definitions exist@5#!. For a
Lévy flight, the probability distribution of the walker’s pos
tion can be represented by one of a set of distributi
known as the Le´vy stable distributions@2,3# after a large
number of steps.

The theory of Le´vy flights remained a mathematical cur
osity with few physical applications for many years. T
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principal reason for this is the mean square displacemen
the Lévy flight random walker diverges in a nonphysic
manner at finite times. In order for Le´vy flights to have
physical applications, the mean squared displacement sh
not diverge within a finite time period. One method su
gested for removing the nonphysicality of the Le´vy flight is
the truncated Le´vy flight ~TLF! model @6#. The TLF model
replaces the jump distribution, which has a divergent sec
moment by a Le´vy distribution truncated at large step size
The truncated Le´vy distribution has a large but still finite
second moment. The TLF model displays behavior simila
Lévy flights at short times but at asymptotically large times
is governed by the central limit theorem as are standard
fusive random walks. A more sophisticated method of de
ing with the divergent mean square displacement in the L´vy
flight model is the Le´vy walk model@7#, in which the time
taken to complete a step depends on the step length,
longer steps taking more time. The Le´vy walk couples the
spatial and temporal aspects of the walker’s motion so
the mean squared displacement cannot diverge within a fi
time.

A consequence of the Le´vy flight and Lévy walk models
is that in general the evolution of the position of the rando
walker ~in a probabilistic sense! must be described by inte
gral equations rather than partial differential equations@8,9#.
The primary difference between Le´vy diffusion processes
and normal diffusion is the scaling of the mean squared
placement with time. Normal diffusion processes have m
squared displacements^r 2& that increase only linearly with
5382 © 1998 The American Physical Society
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PRE 58 5383LÉVY RANDOM WALKS IN FINITE SYSTEMS
time. Lévy processes though can display superdiffus
properties so that̂r 2&;tg with g.1 @10#. Random walks
with subdiffusive behavior (g,1) have also been consid
ered@11# but we do not consider such models in this pap
A Lévy walk differs from a Lévy flight in the sense that is
not a Markovian process; i.e., the future motion of the ra
dom walker is not completely independent of its past hist
but possesses a memory since walkers continue in a fi
direction for a specified~sometimes large! distance between
turning points. Le´vy walks possess some similarities to Ma
kovian processes since, at each turning point, the positio
the random walker’s next turning point is chosen indep
dently of its past history. Le´vy walks thus form a class o
semi-Markovian processes@12#.

The behavior of Le´vy walks and flights is well understoo
in infinite one-dimensional~1D! systems@10#. Lévy flights in
semi-infinite 1D systems have been considered by Zumo
and Klafter@5# in the special case where the jump distrib
tion of the random walkers is itself a Le´vy distribution.
While the Lévy walk on a half axis is not as well understoo
Zumofen and Klafter’s numerical analysis also showed cl
analogies between the scaling behavior of Le´vy flights and
Lévy walks @5#.

The main purpose of this paper is to determine the pr
erties of Lévy walks on finite and semi-infinite intervals wit
absorbing boundaries. These problems are more repres
tive of real physical situations than the case of a Le´vy walk
on an infinite interval, which has received the bulk of the
retical attention to date. The finite interval and the sem
infinite system are thus fundamental building-block case
the theoretical and practical understanding of Le´vy pro-
cesses, as they are for standard diffusive random walks@1#.

The structure of this paper is as follows. In Sec. II t
basic theory of Le´vy walks is reviewed and equations for th
evolution for a Lévy walk on a finite interval are derived. In
Sec. III we consider the behavior of the probability distrib
tion near the boundaries for Le´vy walks on finite and semi-
infinite intervals. In Sec. IV the behavior of the turning poi
distribution of the Le´vy walkers in the asymptotic limit of
large times is considered. In Sec. V we consider the pr
ability distribution of Lévy walkers, particularly in the
asymptotic limit of large times.

II. THEORY OF LE´ VY WALKS

In this section we derive the evolution equations for Le´vy
walks on a finite interval with absorbing boundaries. T
discussion begins with the derivation of the equations of e
lution for the so calledvelocity modelfor a Lévy walk.

In the velocity model the random walker is modeled
moving at constant velocity between turning points wher
changes direction. At each turning point of its motion t
random walker’s next turning point is determined probabi
tically by the jump distribution. Hence the probability th
the random walker currently at a turning point will travel
its next turning point at a distancex in a time t is given by

C~x,t !5c~x!d~ uxu2vt !, ~1!

wherec(x) is the jump distribution andv}uxub. In this pa-
per we only consider theb50 case where the velocity of th
walker is independent of the step size. Without loss of g
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erality the units of time can then be rescaled to ensurv
51. As noted in Sec. I, ifc(x) possesses a divergent seco
moment it gives rise to the properties of the system such
superdiffusion. Forc(x) to have a divergent second mome
and to be monotonically decreasing for largeuxu, we con-
sider c(x) such thatc(x);uxu2a for large uxu, where 1
,a,3. The indexa is then used to classify Le´vy processes,
since their behavior in an infinite 1D system depends only
a after a large number of steps@2,3#. If we denote the turn-
ing point distribution byQ(x,t), one has

Q~x,t !5E
0

LE
0

t

Q~x8,t8!C~x2x8,t2t8!dx8dt8

1d~x2x0!d~ t !, ~2!

on a finite interval@0,L# with absorbing boundaries, wher
x0 is the initial position of the walker. Equation~2! can be
understood by noting that the integral term links the curr
turning point distribution to turning point distributions a
previous times through the jump distribution. The delta fun
tion term corresponds to the initial position of the rando
walker @at t50 in Eq. ~2!#, when the integral term vanishe

The probability distribution for the position of the rando
walker is given by

P~x,t !5E
0

LE
0

t

Q~x8,t8!F~x2x8,t2t8!dx8dt8. ~3!

Equation~3! expresses the fact that the particle is either a
turning point (t5t8) or has a probabilityF(x,t) of currently
being at pointx while traveling between turning points. Th
probability that the random walker is momentarily located
a given point while traveling between turning points is giv
by

F~x,t !5d~ uxu2t !E
uxu

`

c~x8!dx8. ~4!

The integral equations of evolution~2!–~4! on a finite
interval differ from the infinite medium equations throug
the existence of finite limits on the spatial integrals. T
consequence of these finite limits is that, although Lapl
transforms can be used to simplify the temporal aspect of
evolution equations~see below!, the spatial component can
not be simplified using standard operator techniques~unlike
the infinite case where Fourier techniques are convention
employed@7,10#!. After Laplace transforming~2! and ~3!,
the evolution equations become

Q~x,s!5E
0

L

C~x2x8,s!Q~x8,s!dx81d~x2x0!, ~5!

P~x,s!5E
0

L

F~x2x8,s!Q~x8,s!dx8, ~6!

with

C~x,s!5c~x!e2suxu ~7!

and
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F~x,s!5e2suxu E
uxu

`

c~x8!dx8. ~8!

Although Eq.~5! has a kernel of a convolution type it i
defined only on a finite interval and the kernel is not of
class for which exact solutions to the integral equation
known @13,14#. For any reals, Eq. ~5! is a Fredholm equa
tion of the second kind with a symmetric kernel whose
lution can be expressed in terms of the eigenfunctions of
equation

f~x,s!5lE
0

L

C~x2x8,s!f~x8,s!dx8, ~9!

where 1/l is the eigenvalue@13#. The solution to Eq.~5!,
whens is real, may be expressed as

Q~x,s!5(
i 51

`
f i~x,s!

l i~s!21E0

L

f i~x8,s!d~x82x0!dx8, ~10!

wheref i(x,s) are the eigenfunctions of Eq.~9!, and 1/l i are
its eigenvalues@13#.

Appendix A summarizes the principal properties of no
mal diffusive systems on finite intervals with absorbi
boundaries, which are used for comparison purposes in
paper.

III. BEHAVIOR NEAR BOUNDARIES

In this section we consider the behavior of the turni
point distribution near the boundaries of an interval. In S
III A we show that the turning point distribution has a fini
discontinuity at the boundaries of the interval and con
quently that the positional probability distribution of a ra
dom walker is discontinuous at the boundaries. In Sec. I
we consider the analogous result for a Le´vy walk on a semi-
infinite interval.

A. Behavior near a boundary of a finite interval

In order to deduce that the Laplace transformed turn
point distributionQ(x,s) is discontinuous at the boundary
is sufficient to showQ(x,s)>C1.0 for all 0,x,L where
C1 is a constant. This ensures limx→0Q(x,s)>C1.0,
whereasQ(x,s)50 for x,0 andx.L.

Considering Eq.~5! and notingC(x,s)>c(L)e2sL.0,
we find that

Q~x,s!>c~L !e2sLE
0

L

Q~x8,s!dx8. ~11!

SinceQ(x8,s) is continuous, nowhere negative, and not e
erywhere zero fors.0, we have

E
0

L

Q~x8,s!dx8.0. ~12!

If we defineC(s) by

C~s!5c~L !e2sLE
0

L

Q~x8,s!dx8, ~13!
e

-
e

-

is

.

-

g

-

we find

Q~x,s!>C~s!.0 ~14!

for all 0,x8,L. Thus Q(x,s) is discontinuous at the
boundary fors.0.

The theorem of corresponding limits~p. 241 of Ref.@15#!
states if limx→0f (x,s)5h(s) then limx→0f (x,t)5h(t) where
f (x,s), f (x,t) and h(s),h(t) are Laplace transform pairs
Thus the discontinuities inQ(x,s) at the boundaries imply
corresponding discontinuities at the boundaries forQ(x,t),
for at least some times. From Eq.~6!, each discontinuity in
Q(x,s) implies a discontinuity inP(x,s). Hence the prob-
ability distribution P(x,t) is also discontinuous at eac
boundary for at least some times. Such a discontinuity ne
boundary can only occur after a time corresponding to
fastest time for a random walker to reach the boundary fr
its initial position. It is important to note the generality of th
discontinuity result. Ifc(L)Þ0, this is sufficient~though not
necessary! for a discontinuity to arise. Sincec(L)Þ0 may
be satisfied by jump distributions with finite second m
ments, a discontinuity can occur even if the system ob
ordinary diffusion. This would appear to contradict the sta
dard solution to the usual diffusion equation given in Appe
dix A, which shows the probability distribution is alway
continuous near its boundaries. In fact there is no contra
tion since, in the derivation of the ordinary diffusion equ
tion, it is implicitly assumed not only that the second m
ment of the jump distribution is finite but that it is muc
smaller than the dimensions of the system so thatc(L) and
the discontinuity are negligible. For Le´vy flights the slower
decay in the jump distribution increases the importance
the boundary discontinuity for finiteL.

We now turn to our numerical results. To obtain the tur
ing point and probability distributions numerically, Mont
Carlo simulations with large ensembles of random walk
were performed. The Monte Carlo simulations were p
formed using systems where jump steps and hence time
space were discretized. Figure 1 shows results from a typ
Monte Carlo simulation at moderately largeL, shown for
times after the first walkers reach the boundaries. The

FIG. 1. Monte Carlo simulation ofP(x,t) at various times. The
curves from top to bottom at the center correspond tot551, 100,
150, 200, 300, 400, 600, and 800 respectively. The parameter
c(x)5C(a)(11x2)2a/2, L5100, a52.5, andx0550. Boundary
discontinuities can be seen at the edges.
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continuity at the boundary is clearly visible in the figur
After an initial increase the boundary discontinuity deca
but as will be seen from the asymptotic analysis ofP(x,t)
remains significant relative toP(x,t) at all times.

B. Behavior near boundary for semi-infinite interval

For a Lévy walk on a semi-infinite interval,Q(x,t) and
P(x,t) are discontinuous near the boundary for at least so
times. This can be deduced from a variation of the pr
given in Sec. III A. For Le´vy flights it is similarly possible to
show that a boundary discontinuity exists. Zumofen a
Klafter’s analytic analysis of Le´vy flights considered the
near-boundary behavior after asymptotically large tim
where the discontinuity vanishes. Nonetheless for fin
times the boundary discontinuity can be significant. Zumo
and Klafter’s numerical analysis of Le´vy flights and walks
~shown in Fig. 2 and Fig. 4 of Ref.@5#! at large but finite
times generally agrees with the large time analytic pred
tions around the boundary but shows deviations from th
predictions very near to the boundary. These deviations
be understood as arising from the boundary discontinu

FIG. 2. Monte Carlo simulation ofP(x,t) in a semi-infinite 1D
system.~a! P(x,t) at various times. The curves from top to botto
at left correspond tot530, 50, 90, 150, respectively, with param
etersc(x)5C(a)(11x2)2a/2, anda52.5. The boundary discon
tinuity can be seen atx50. ~b! P(x,t)t1/211/(a21) vs x/t1/(a21) at
various t, showing collapse to Zumofen and Klafter’s asympto
scaling form. The curves from top to bottom at left correspond
t5120, 240, 480, 1080, respectively. The dashed line gives
theoretical near-boundary scaling. The parameters arec(x)
5C(a)(11x2)2a/2 anda52.5.
s
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Zumofen and Klafter’s numerical results show the relat
significance of the boundary discontinuity decreases w
time. Our numerical analysis confirms these conclusions
shown in Fig. 2. Figure 2~a! shows a Monte Carlo simulation
showing the boundary discontinuity decreasing in time. W
note the peaks at largex seen in Fig. 2~a! correspond to
random walkers atuxu5t, which are still moving to their first
turning point. Analytically these peaks are delta functio
discretization leads to their finite height in the figure which
a measure of the relative area under them. Zumofen
Klafter argued that a data collapse to a universal asympt
form should occur ifP(x,t)t1/211/(a21) is plotted against
x/t1/(a21). Figure 2~b! shows this collapse, thereby confirm
ing the validity of Zumofen and Klafter’s analytic and nu
merical analysis of the scaling behavior ofP(x,t). Very near
to the boundary,P(x,t) deviates from the predicted scalin
due to the boundary discontinuity, as seen by the left h
end points of the curves in Fig. 2~b!. The end point of each
of the P(x,t) curves corresponds to the samex, with the
apparent horizontal movement due to the time-depend
scaling of the horizontal axis. From the figure we can infer
each value of the scaling parameter,P(x,t) approaches the
scaling form. Similarly for any value ofx, the contribution of
the boundary discontinuity relative to the peak ofP(x,t)
decreases. Despite this the numerical results are inconclu
as to whether for any fixed value ofx itself near the bound-
ary, P(x,t) approaches the scaling form, as the end points
the P(x,t) curves do not appear to be approaching the s
ing form.

IV. ASYMPTOTIC TEMPORAL BEHAVIOR

In this section we consider the asymptotic behavior of
turning point distribution at large times and contrast it w
the behavior of normal diffusion processes governed by
diffusion equation. As the Laplace transformed turning po
equation~5! is the simpler to work with, we need to deriv
the large-time behavior ofQ(x,t) from Q(x,s). In Sec. IV A
we deduce that to a good approximation the asymptotic t
dependence of theQ(x,t) involves exponential decay. In
Sec. IV B an estimate for the decay constant of this deca
obtained using variational techniques and its scaling for la
system sizes is considered. In Sec. IV C the eigenfunction
the turning point equation are used to estimate the time
quired for the system to approach its asymptotic exponen
behavior.

A. Asymptotic time dependence

In order to deduce the time-asymptotic behavior of t
turning point distribution we require knowledge of the si
gularities ofQ(x,s). In Appendix B we deduce that the sin
gularities of Q(x,s) consist of a countably infinite set o
simple poles along the real axis for negatives. Denoting the
polessj so that they satisfyus1u,us2u,••• we can then in-
vert the Laplace transform for large times giving rise to

Q~x,t !}e2us1ut ~15!

o
e
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for t→`. This result is analogous to the dominance of t
first eigenfunction in the time asymptotic behavior of a s
tem undergoing normal diffusion@see Eq.~A2! in Appendix
A#.

In Fig. 3 we show numerical results for the scaled turn
point distributionQ(x,t)e1us1ut at various times, calculate
by Monte Carlo simulations. If Eq.~15! correctly predicts the
asymptotic behavior ofQ(x,t), the graphs ofQ(x,t)e1us1ut

should coincide at large times. Figure 3 thus demonstr
the asymptotic behavior of the system is accurately descr
by the exponential decay given in Eq.~15!. Note that in order
to construct Fig. 3 a numerical value forus1u was required. In
this paper accurate positions for the singularitiessj are ob-
tained through numerical inversion of Eq.~5!. For s!1 the
numerical inversion is performed using the Nystrom meth
with Gauss-Legendre quadrature@16#. Wheres does not sat-
isfy s!1, the product-Nystrom method@16# is used instead
The use of different methods of inversion for different r
gimes ofs is required since the Nystrom method converg
much slower than the product-Nystrom method if the ker
of the integral equation to be inverted has a sharp disco
nuity in its derivatives. Wheres is not small the kernel of Eq
~5! has a sharp discontinuity in its derivatives wherex5y.

B. Estimated decay constant for exponential decay

This subsection estimatess1 , the decay constant for th
principal eigenfunction, using a Rayleigh quotient variation
technique. The Rayleigh quotient provides a lower bound
the largest eigenvalue based on a given estimated first ei

FIG. 3. The scaled turning point distributionQ(x,t)e1us1ut at
varioust. The curves from top to bottom at the center correspon
t520, 40, 60, 100, 160, 260, 360, 460, respectively, forc(x)
5C(a)(11x2)2a/2, L5100,a52.5, andx0550.
e
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ed
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function ~p. 63 of Ref.@13#!. The Rayleigh quotient is equa
to the first eigenvalue where the estimate for the first eig
function used is exactly the true first eigenfunction. In th
subsection the normal diffusion first eigenfunction~A2! is
used to approximate the first eigenfunction of the Le´vy walk.
The approximation made is likely to be most accurate aa
approaches 3 from below, since fora.3, the second mo-
ment ofc(x) becomes finite and for asymptotically largeL
such a system will undergo normal diffusion for largeL.

The Rayleigh quotient is given by

R5

E
0

LE
0

L

c~ ux2yu!e2sux2yusin~px/L !sin~py/L !dxdy

E
0

L

sin2~px/L !dx

.

~16!

After changing variables and performing the integratio
over (x1y) in the numerator and overx in the denominator,
we obtain

R52E
0

L

c~u!e2suH F12
u

LGcosS pu

L D
1

1

p
sinFpS 12

u

L D G J du. ~17!

At s5s1 , the Rayleigh quotient approximatesl151
from below. By noting the Rayleigh quotient is a decreas
function of s, we can determine a lower bound approxim
tion for s1 , by equating the Rayleigh quotient to unity an
solving for s1 . Numerical simulations indicate for largeL,
us1u!1, so assumingusu!1 one hase2su.12su, and we
find

s1'

122E
0

L

B~u!du

22E
0

L

uB~u!du

, ~18!

B~u!5c~u!F S 12
u

L D cosS p
u

L D1
1

p
sinS p

u

L D G . ~19!

In Appendix C we show that the estimate fors1 can be
expressed in terms ofL as

o

s15

S 1/~a21!1(
i 52

`

ai /~ i 112a!DA/La212(
i 52

`

aiF i~0!/Li

F1~0!@A/~22a!#1/La211(
i 52

`

ai$@A/~ i 122a!#1/La222F i 11~0!/Li%

. ~20!

From Eq.~20!, the estimated asymptotic scalings ofs1 at asymptotically largeL are found to be
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s1}H L22@11o~1/Lmin~a 23,2!!#, a.3

L12a@11o~1/Lmin~ u 32a u ,u a 22u !!#, 2,a,3

L21@11o~1/L u22au!#, 1,a,2.
~21!

We note that a number of other approximations can be m
for the true first eigenfunction of the system. However, p
vided the first eigenfunction can be expressed as a unifor
convergent power series and at largeL approaches an
asymptotic form expressible as a uniformly converg
power series inx, it can be shown that the scaling ofs1 , in
each regime will agree with the first term of the scaling giv
in Eq. ~21!, although the order of the correction terms m
differ. @This result is subject to an additional assumption
quiring the asymptotic form does not cause a term analog
to the bracketed term in the numerator of Eq.~20! to vanish.#

The scalings1}L22 for a.3 is expected since the jum
distribution possesses a finite second moment in this reg
and the random walk can be approximated by a normal
fusive random walk for largeL ~see Appendix A!. The s1
}L12a scaling for 2,a,3 demonstrates a fundamental d
ference between Le´vy walk processes and normal diffusiv
processes, even at asymptotically large times. ThisL12a

scaling is only accurate for very largeL because the relative
size of correction terms decreases no faster thanL20.5. We
consider thea,2 scaling separately below.

In order to test the scaling for the decay constants,
merical inversion of the Laplace transformed turning po
equation~5! was performed. Figure 4 compares the nume
cally obtained values ofs1 with the first order scaling given
in Eq. ~21! by dividing s1 by the leading term on the right o
Eq. ~21! in each case and plotting the results againstL. In
each case, the results appear to approach a constant va
L increases, consistent with Eq.~21!. As expected from Eq
~21! the correction terms are significant whereL is only
moderately large, so the results in Fig. 4 only asymptotica
approach constant values. As Eq.~21! indicates, for 2,a
,3, convergence tos1}L12a is fastest fora52.5 and slow-
est neara52 or a53. Figure 4~a! is consistent with this
analysis as the convergence to asymptotically constant
ues is fastest fora nearer toa52.5 ~where the results follow
an almost horizontal line!. Similarly Eq. ~21! indicates for
1,a,2 that convergence tos1}L21 is fastest neara51,
which is consistent with Fig. 4~b!.

An estimate ofs1 at moderately largeL values can be
obtained analytically by computation of the coefficients
Eq. ~20! or semianalytically by performing two numerica
quadratures in Eq.~18! using a specified form ofc(x). Our
numerical computations show that the fast semianal
method for obtaining s1 agrees with the more time
consuming method of numerical inversion of the turni
point equation~5! to better than 15%, for moderately largeL
and 2,a,3. As expected, estimatings1 using the normal
diffusion first eigenfunction is most accurate fora near 3.
For 2.5&a,3, the relatively small error (,5%) introduced
by this approximation indicates the asymptotic shape of
turning point distribution is closely approximated by its no
mal diffusion counterpart. This error steadily increases aa
decreases, indicating that the approximation using the
mal diffusion eigenfuction breaks down fora&2. Nonethe-
de
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ly
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-
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less, thes1}L21 asymptotic scaling for 1,a,2 is still
observed in Fig. 4~b!, since this scaling is insensitive to th
shape of the estimated eigenfunction, as noted earlier.

C. Time to approach asymptotic behavior

In this subsection the decay constant corresponding to
second eigenvalue of Eq.~9! is considered. The second de
cay constants2 provides a measure of the inverse of the tim
required for the system to approach its asymptotic beha
~i.e., the time after which its behavior is dominated by t
first eigenfunction!. The variational principle for obtaining
the second eigenvalue analogously to the method use
Sec. IV C is known as the min-max principle~p. 63 of Ref.
@13#!. The min-max principle states the second eigenfunct
maximizes the Rayleigh quotient over the set of functio
orthogonal to the first eigenfunction. The Rayleigh quotien
maximum value over this set of functions is the second
genvalue. Since the first eigenfunction is not known exac
the use of the second normal diffusion eigenfunction as
approximation to obtain the second eigenvalue will prov
only an estimate of the second eigenvalue rather than a
orous bound. This is due to the fact that the second nor
diffusive eigenfunction is not orthogonal to the first eige
function for the Lévy process so that the min-max princip
does not strictly apply. Using the second normal diffusi
eigenfunction as an approximation to obtain an estimate
s2 in the same way thats1 was estimated in Sec. IV C yield

FIG. 4. The scaled decay constant vsL in various regimes.~a!
us1uLa21 vs L for 2,a,3 with c(x)5C(a)(11x2)2a/2. The sets
of points correspond toa52.75 ~crosses!, 2.5 ~squares!, 2.25 ~tri-
angles!, and 2.05~diamonds!. ~b! us1uL vs L for 1,a,2 with
c(x)5C(a)(11x2)2a/2. The sets of points correspond toa
51.05 ~diamonds!, 1.25 ~triangles!, 1.5 ~squares!, and 1.75
~crosses!, respectively.
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s2'

122E
0

L

D~u!du

22E
0

L

uD~u!du

, ~22!
a
he

ec
th
r-

un

ve

s

-

-
qs
D~u!5c~u!F S 12
u

L D cosS 2p
u

L D1
1

2p
sinS 2p

u

L D G ,
~23!

and hence
s2'

S 1/a211(
i 52

`

bi / i 112a DA/La212(
i 52

`

biF i~0!/Li

F1~0!2@A/~22a!#1/La211(
i 52

`

bi~@A/~ i 122a!#1/La222F i 11~0!/Li !

, ~24!
for
y as
or
hat

sent
the

a-
is

-

where thebi are now given by

(
i 52

`

biu
i512~12u!cos~2pu!2

1

2p
sin~2pu!. ~25!

The scaling ofs2 for largeL is the same as fors1 though the
proportionality constants differ. For moderately largeL and
2,a,3, our numerical studies indicate the decay const
s2 can be estimated analytically or semianalytically in t
same way ass1 , with similar accuracy to thes1 estimates. It
should be noted though, since the estimated second d
constant is not a bound but only an estimate, errors in
estimated value ofs2 include both underestimates and ove
estimates.

As noted in Appendix A, the ratio ofs2 /s1 for normal
diffusion is 4. By comparing the ratio of the estimates ofs1
ands2 given in Eqs.~20! and~24! for 2,a,3 we estimate

lim
L→`

s2

s1
'

1/~a21!1(
i 52

`

bi /~ i 112a!

1/~a21!1(
i 52

`

ai /~ i 112a!

. ~26!

Numerical evaluation of the series in Eq.~26! for 2,a,3
shows that the ratio is less than 4 and is a decreasing f
tion of a. Convergence at moderately largeL to this ratio is
expected to be very slow for the same reasons that con
gence to the asymptotic forms ofs1 ands2 was slow due to
the correction terms given in Eq.~21!. For a.3 the ratio of
Eqs.~20! and ~24! yields

lim
L→`

s2

s1
5

b2

a2
54, ~27!

as is expected since the system behaves in a normal diffu
manner in this limit@cf. Eq. ~A4!#.

In order to study the ratios2 /s1 at moderately largeL, the
jump distribution c(uxu)5C(a)/(11x2)a/2 was selected.
@C(a) is the normalization constant and is given byC(a)
51/b@1/2,1/2(a21)#, whereb is the beta function, i.e., Eu
ler’s integral of the first kind#. Figure 5~a! shows the numeri-
cally calculated ratios ofs1 ands2 , relative to the semiana
lytic estimate obtained from numerical quadrature of E
nt

ay
e

c-

r-

ive

.

~18! and~22!. As before, our estimates are most accurate
2.5,a,3, whereas the accuracy decreases substantiall
a decreases toward 2, as can be seen in the results fa
52.05 in Fig. 5~a!. Nonetheless the general trend shows t

FIG. 5. Ratio ofs1 and s2 for variousL and a. The symbols
denote the numerically calculated values. The dotted lines repre
semianalytic estimates derived from numerical quadrature of
estimates~18! and ~22! for s1 and s2 . The dependent axis for~a!
has been scaled toL21/2 in order to show the detail of the semian
lytic estimates. The jump distribution for these simulations
c(x)5C(a)(11x2)2a/2. ~a! The points area53.25 ~triangles!,
3.0 ~plusses!, 2.75 ~inverted triangles!, 2.5 ~squares!, 2.25 ~dia-
monds!, and 2.05~crosses!. ~b! Same as~a! for a51.75~triangles!,
1.5 ~squares!, and 1.25~diamonds!, except that no semianalytic es
timates are available for 1,a,2.
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for moderately large interval sizes, the ratios2 /s1 decreases
with decreasinga and approaches its asymptotic value on
slowly. It is thus concluded at moderately large times
contribution of the second eigenfunction is more signific
for 2,a,3 than for normal diffusion since its exponenti
decay is~relatively! slower. For 1,a,2 we do not posses
an analytic estimate fors1 ands2 only the asymptotic scaling
given in Eq. ~21!. Consequently we can make no analy
prediction relating to the ratios2 /s1 in the range 1,a,2.
Figure 5~b! shows numerically calculated ratios ofs2 ands1
at moderately largeL. Unlike for 2,a,3, the ratios2 /s1
may be greater or less than 4 for 1,a,2 and hence the
relative contribution of the second eigenfunction at mod
ately large times can be less significant than for normal
fusion ~for 1,a,2 and neara52) but becomes more sig
nificant as the ratios2 /s1 decreases with decreasinga. Thus
s2 /s1 is decreasing in both the 2&a,3 and 1&a&2 re-
gions, although sinces2 /s1 is greater ata51.75 than ata
52.05, there is either a continuous or a discontinuous
crease ins2 /s1 for some part of 1.75&a&2.05.

V. PROBABILITY DISTRIBUTIONS

Having considered the asymptotic behavior of the turn
point distribution in Sec. IV we now consider the asympto
behavior of the probability distribution itself. Equations~6!
and ~8! connect the probability distribution with the turnin
point distribution. SinceF(x,s) possesses no singularitie
for finite s, from Eq. ~6! it can be seen thatP(x,s) has the
same singularities for finites asQ(x,s). HenceP(x,t) will
have the same exponential decay behavior as that ofQ(x,t),
with s1 ands2 playing similar roles. For example

P~x,t !}e2us1ut, ~28!

ast→`. If the probability that a random walker is still in th
interval after a timet is termed the survival probabilityQ(t),
Eq. ~28! predicts

Q~ t !5E
0

L

P~x,t !dx,

}e2us1ut for t→`. ~29!

Figure 6 shows the survival probability obtained from

FIG. 6. Survival probability Q(t) vs t for a52.5, c(x)
5C(a)(11x2)2a/2, L5100, andx0550.
e
t

-
f-

-

g

typical Monte Carlo simulation, clearly showing exponent
decay at large times. The decay constant for the expone
decay in Fig. 6 agrees with the independently calcula
value fors1 , obtained through numerical solution of Eq.~5!.

In order to determine the next term that contributes to
survival probability, we note when the second eigenfunct
component ofQ(x,t) is closely approximated by its norma
diffusion counterpart, the second eigenfunction is antisy
metric and does not contribute to the survival probabil
despite its contribution toP(x,t). Thus, subtracting the con
tribution of the first decay term,Q1(t), from the survival
probability isolates the next contribution to the surviv
probability; i.e., exponential decay at a rate given by t
third decay constant, as is confirmed in Fig. 7. The de
constant observed in Fig. 7 is in agreement withs3 calcu-
lated independently through numerical solution of Eq.~5!.
The deviation from exponential decay fort*120 in Fig. 7 is
due to inaccuracy in the estimation of the subtracted fi
decay term.

By considering an inner product ofP(x,t) with an esti-
mate for the second eigenfunction the contribution of
second decay constant to the evolution ofP(x,t) can be
demonstrated as shown in Fig. 8. The decay constant of
exponential decay observed in Fig. 8 agrees withs2 calcu-

FIG. 7. Survival probabilityQ(t) with first decay termQ1(t)
removed. Parameters area52.5, c(x)5C(a)(11x2)2a/2, L
5100, andx0550.

FIG. 8. Inner product ofP(x,t) with an estimate of the secon
eigenfunction,̂ P(x,t)usin(2px/L)&, demonstrating the contribution
of the s2 term to the evolution ofP(x,t). Parameters area52.5,
c(x)5C(a)(11x2)2a/2, L5100, andx0525.
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lated independently through numerical solution of Eq.~5!.
The deviations from exponential decay visible in Fig. 8 a
due to the inner product not completely excluding the c
tributions of the other decay terms toP(x,t) because we use
only an estimate for the second eigenfunction.

We consider the spatial variation ofP(x,t) next. For time
periods less than the period for the fastest random walke
reach a boundaryP(x,t) evolves identically to the Le´vy
walk in the infinite 1D system, which was studied b
Zumofen and Klafter@10#. This differs from a Le´vy flight on
a finite interval whereP(x,t) at no time evolves identically
to the Lévy flight in the infinite 1D system. A typical Monte
Carlo simulation for a Le´vy walk on a finite interval at early
times is shown in Fig. 9. It should be noted that the peaks
the leading edges ofP(x,t) are due to random walker
whose first step is very large and are still traveling to th
first turning point. The area under the peaks diminishes
time and the peaks eventually leave the system.@Figure 1
shows the evolution ofP(x,t) after the peaks have left th
system.#

For times t@1/s2 , P(x,t) approaches an asymptot
shape sinceQ(x,t) is dominated by the first eigenfunction i
this regime. The time asymptotic spatial form forP(x,t) is
related to the first eigenfunction ofQ(x,s) at s5s1 through
Eq. ~5!. Strictly speaking the spatial component ofP(x,t)
decaying at a rate given by the first decay constant is no
eigenfunction since it is not the solution of an eigenva
equation, but since it corresponds to the first eigenfunctio
normal diffusion; we shall refer to it as the first ‘‘pseud
eigenfunction.’’ Figures 10~a! and 10~b! show the first pseu-
doeigenfunction component ofP(x,t) for a52.5 and a
51.75 at variousL. We note some general properties of t
first pseudoeigenfunctions observed in numerical anal
and which are also evident in Figs. 10~a! and 10~b!. For a
given L, the size of the boundary discontinuity in the fir
pseudoeigenfunction increases with decreasinga. With in-
creasingL the size of the boundary discontinuity decreas
and at least fora.2 it can be shown analytically that th
boundary discontinuity vanishes asL becomes large. The
asymptotic shape of the pseudoeigenfunction at largeL is not
precisely known, but our numerical analysis cannot rule
an approach to the normal diffusion first eigenfunction
largeL for a.2. There is a close similarity between the fir

FIG. 9. Monte Carlo simulation ofP(x,t) at smallt. Parameters
are c(x)5C(a)(11x2)2a/2, L5100, a52.5, andx0550, t510
~solid!, 20 ~dotted!, 30 ~dashed!, and 40~dot-dashed!.
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pseudoeigenfunction at largeL for 2,a,3 and the normal
diffusion eigenfunction, so it may be difficult in real physic
systems to distinguish experimentally between Le´vy walks
and normal diffusion, by considering only the tim
asymptotic shape ofP(x,t). For a,2 @see Fig. 10~b!# it
appears considerably less likely that the pseudoeigenfunc
approaches the diffusive one.

We now note some general properties of the second p
doeigenfunction. For 2,a,3 the second eigenfunction fo
normal diffusion is a close approximation to the seco
‘‘pseudoeigenfunction,’’ but asa approaches 2 at moder
ately largeL, this approximation deteriorates and the seco
pseudoeigenfunction may even differ in the number of no
it possesses compared to the second eigenfunction for
mal diffusion @13#. This behavior continues for 1,a,2
even at very largeL. Although this might at first appear
surprising result it is consistent with the fact that for 1,a
,2 the integral operator in Eq.~9! is not ‘‘oscillatory’’ at s2
in the sense of Ref.@13#, even for largeL. Only for an
‘‘oscillatory’’ operator is it guaranteed that thenth eigen-
function will have (n21) nodes. Figure 11~a! shows an ex-
ample of the second pseudoeigenfunction fora52.5, where
it is similar in form to the second eigenfunction for norm
diffusion. Figure 11~b! shows an example of a second pse
doeigenfunction, which has two nodes rather than one. N
that this pseudoeigenfunction would contribute to the s
vival probability Q(t) because it is symmetric, rather tha

FIG. 10. Time-asymptotic shape forP(x,t) at variousL for
c(x)5C(a)(11x2)2a/2, L5100 ~dashed!, 200 ~dotted!, 1600
~dot-dashed!. The normal diffusion first eigenfunction~A2! is in-
cluded for comparison in each case~solid curve!. ~a! a52.5. ~b!
a51.75.



ac
-
an

i
m
er
l

rt
th
in
g
th
fo
ite
si
rg
b

-

in-
m
the
is-

as

een
if-

e-
e of
me.
nts

ge
ore
er.
r-

n-

y

e
st

y

ti-
tly
c-

ve
of
ive

rch
.

-
b-

s

l

e
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antisymmetric. This pseudoeigenfunction cannot appro
the diffusive second eigenfunction at largeL unless the pseu
doeigenfunction changes its topology from symmetric to
tisymmetric at some largeL.

VI. SUMMARY AND CONCLUSIONS

We have studied the behavior of Le´vy walks on finite
intervals with absorbing boundary conditions, considering
particular the near-boundary and asymptotically large ti
behavior using analytic, Monte Carlo, and numerical inv
sion techniques. Le´vy walks of this type are fundamenta
building blocks in the understanding of Le´vy processes in
physical situations, where boundaries are present.

The main results of this paper are as follows:
~i! Initially the Lévy walk on the finite interval evolves in

the same way as for the infinite system. For times sho
than the period for the fastest random walkers to reach
boundaries,P(x,t) possess spikes at its edges correspond
to the random walkers still traveling to their first turnin
point. Eventually these spikes leave the system. After
spikes have left the system the probability distribution
Lévy walks is discontinuous at the boundaries for both fin
and semi-infinite systems. For the finite system, this can
nificantly affect the system description at moderately la
interval sizes, where the boundary discontinuities can
relatively large. For a Le´vy walk on a finite interval the size
of the discontinuity relative toP(x,t) need not become in

FIG. 11. The second pseudoeigenfunction ofP(x,t) for c(x)
5C(a)(11x2)2a/2, L5800 ~dashed!. The normal diffusion sec-
ond eigenfunction~A2! is included for comparison in each cas
~solid curve! ~a! a52.5. ~b! a51.75.
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significant even at asymptotically large times.
~ii ! At asymptotically large times the Le´vy walk probabil-

ity distribution decays exponentially in magnitude on the
terval, as does the total survival probability that rando
walkers remain on the interval. This is a consequence of
dominance of the first eigenfunction of the turning point d
tribution at large times.

~iii ! For a jump distribution that satisfiesc(x);uxu2a for
large uxu, the scaling of the exponential decay constant w
estimated ass1}L12a for 2,a,3 ands1}L21 for 1,a
,2. These scalings show a fundamental difference betw
Lévy walks and the asymptotic time behavior of normal d
fusion processes, which haves1}L22.

~iv! As in normal diffusion, the decay constant corr
sponding to the second eigenfunction provides an estimat
the time before the system reaches its asymptotic regi
Analysis of the ratio of the first and second decay consta
indicates that for 2,a,3 this ratio is smaller for Le´vy
walks than for normal diffusion, so that at moderately lar
times the contribution of the second eigenfunction is m
significant since its exponential decay is relatively slow
For 1,a,2 the ratio can be larger or smaller than for no
mal diffusion, but decreases with decreasinga.

~v! The high degree of similarity between the first eige
functions of the Le´vy walk and normal diffusion for largeL
and 2&a,3 suggest it would be difficult to experimentall
differentiate such a Le´vy walk on a finite interval from nor-
mal diffusion by considering only the differences in th
asymptotic shape of the probability distribution. The mo
characteristic difference between the Le´vy walk ~for 2,a
,3 and largeL) is the difference in the scaling of the deca
constant with system size. For 1,a,2 the first eigenfunc-
tion at moderately largeL differs significantly from its nor-
mal diffusion counterpart, having large boundary discon
nuities relative to its overall size and so it is consequen
flatter than the normal diffusion first eigenfunction. The se
ond eigenfunction, for largeL and 1,a,2 can differ from
the normal diffusive case so significantly that it can ha
different symmetry properties and a different number
nodes than the second eigenfunction of the normal diffus
system.

ACKNOWLEDGMENT

This work was supported by the Australian Resea
Council and the Australian Postgraduate Award Scheme

APPENDIX A: REVIEW OF KEY RESULTS FOR
NORMAL DIFFUSION ON A FINITE INTERVAL

In this Appendix we review the theory of normal diffu
sion on a finite interval with absorbing boundaries. The pro
ability distribution for normal diffusion on a finite interval i
given by the solution of

]P~x,t !

]t
5D

]2P~x,t !

]x2
, ~A1!

where D is the diffusion coefficient. For a finite interva
@0,L# with absorbing boundaries, Eq.~A1! is solved subject
to the conditionsP(x,0)5d(x2x0) and P(x,t)50 for x
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<0 or x>L. The derivation of Eq.~A1! requires not only
that the second moment of the jump distribution be finite
also tends to zero relative toL2 @1,17#. The solution of Eq.
~A1! can be expressed in terms of its eigenfunctions as@1#

P~x,t !5 (
n51

`

Ansin~npx/L !e2snt, ~A2!

where sn5Dn2p2/L2. We note a number of properties o
this probability distribution:~i! From Eq.~A2! it can be seen
that P(x,t) is always continuous at the boundaries.~ii ! For
asymptotically large times we find

P~x,t !}e2s1t. ~A3!

~iii ! The ratio of the first two decay constants is given by

s2

s1
54. ~A4!

Since Lévy processes are more easily discussed prima
in Laplace transformed form, we note for that the Lapla
transform ofP(x,t) is

P~x,s!5 (
n51

`

Ansin~npx/L !
1

s1sn
. ~A5!

APPENDIX B: SINGULARITIES OF THE TURNING
POINT DISTRIBUTION

In this Appendix we deduce the positions and proper
of the singularities ofQ(x,s). This enables us to determin
the asymptotic properties ofQ(x,t) at large times.

The Fredholm alternative theorem@13# guarantees a Fred
holm equation of the second kind such as Eq.~5! possesses a
unique solution except where its homogeneous eigenv
equation has a nontrivial solution. Thel51 form of Eq.~9!
is the corresponding homogeneous eigenvalue equation
Eq. ~5!. HenceQ(x,s) will possess singularities for thos
values ofs for which Eq.~9! possesses an eigenvalue eq
to unity. For each real value ofs the kernel of Eq.~9! is
symmetric and bounded. Hence for reals the integral opera-
tor for the equation is self-adjoint and Eq.~9! has at most a
countable set of eigenvalues, which if they approach a p
as a limit, can only approach zero as a limit point. Here
assume that Eq.~9! has a countably infinite set of eigenva
ues.

For each real value ofs the kernel of Eq.~9! is positive
everywhere and the integral operator is thus termed pos
itself. For such a linear operator the eigenvalues satisfy

1

l i
<

1

l1
< max

xe[0,L]
E

0

L

K~x,y!dy, ~B1!

where 1/l i are the eigenvalues and 1/l1 is the first eigen-
value @13#. Hence we have

1

l1
<E

2L/2

L/2

c~ uyu!e2suyudy. ~B2!
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Sincec(y) is normalized on the interval (2`,`), Eq. ~B2!
demonstrates that singular points ofQ(x,s) can exist only
for negatives where the largest eigenvalue can be grea
than unity. For increasingly negatives the bound on the larg-
est eigenvalue increases. We assume then ass becomes in-
creasingly negative, each eigenvalue increases and gives
to a singularity when it is equal to unity and hence a cou
ably infinite series of singularities corresponding to eigenv
ues equal to unity exists for negatives. This assumption is
plausible since, as we note below, each of the singularitie
Q(x,s) are isolated and there are at most a countably infin
set of singularities. Further fora.3, P(x,s) and Q(x,s)
have a countably infinite set of singularities. Since a conti
ous change ina will yield a continuous change to the singu
larities on physical grounds,P(x,s) and Q(x,s) will thus
also have a countably infinite set of singularities for a fin
range ofa with a,3.

At this point it remains possible thatQ(x,s) possesses
singularities not on the real axis and we eliminate this p
sibility in the next few paragraphs. SinceQ(x,s) is defined
off the real axis by analytic continuation,Q(x,s) satisfies
Eq. ~5! for complexs. Thus the Fredholm alternative theo
rem guarantees that complex singularities inQ(x,s) can only
exist where Eq.~9! has an eigenvalue equal to unity for
complexs. Thus we need to obtain thoses for which Eq.~9!
has an eigenvalue equal to unity.

It can be shown the set of values ofs ~in general both
complex and real! for which Eq.~9! has an eigenvalue equa
to unity is closed and discrete so that each singularity
Q(x,s) is isolated and there are only a countable numbe
these. The proof of this relies on spectral theory of analy
functions into Banach algebras, the details of which can
found in Chap. 3 of Ref.@18#, especially the discussion re
lating to Theorem 3.4.26 in this reference. SinceQ(x,s) has
a countable infinite set of singularities on the real axis th
is at most a finite set of isolated complex singularities. It
assumed that the isolated singularities are not essential
gularities.

Since Q(x,s) is real for reals and defined by analytic
continuation to the remainder of the complex plane, the co
plex singularities ofQ(x,s) are symmetric about the rea
axis. If Q(x,s) possessed a complex singularity such th
Re(sj ).0, this singularity would contribute a residue with
component that grows exponentially with time. The no
physicality of this behavior leads to the conclusion th
Q(x,s) cannot have any complex singularities with Re(sj )
.0. Considering complex singularitiessj such that Re(sj )
<0, anduIm(sj )u.0, we note that each pair of such comple
singularitiessj andsj* would contribute an oscillatory term
in the Laplace inversion of the form

Res~sj1sj* !}Gj~x!tmje2uRe~sj !utcos@ Im~sj !t#, ~B3!

whereGj (x) is the spatial term associated with the singul
ity. Since each of the possible complex singularities is i
lated, we can sum the singularitiessj5aj1bj i to give

Q~x,t !}(
j

Gj~x!tmje2uaj utcos~bj t !1F~x,t !, ~B4!
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PRE 58 5393LÉVY RANDOM WALKS IN FINITE SYSTEMS
whereF(x,t) is the contribution from the singularities on th
real axis and thus is not oscillatory. SinceQ(x,t) is a turning
point distribution for a diffusionlike process, on physic
grounds*Q(x,t)dx must be a monotonic decreasing fun
tion of time. But this implies thebi are all zero, otherwise
oscillatory behavior at the beat frequencies will arise amo
the terms in*Q(x,t)dx. It is thus concluded that all singu
larities of Q(x,s) must lie on the real axis.

Now that the positions of the singularities have been
termined, it will be shown that each of the singularities is
simple pole. Denoting bysj a singularity ofQ(x,s) lying on
the negative real axis, we consider the eigenvalues, 1/l, and
eigenfunctions in a neighborhood ofsj . If we restrict our
attention to a neighborhood that lies on the real axis ofs, we
can expand the eigenvalue and eigenfunction in perturba
series in the usual way since the kernel is symmetric in
neighborhood. This yields

(
i 50

`

« if i~x!5(
i 50

`

« il iE
0

L

c~ ux2yu!e2~sj 1«!ux2yu

3(
j 50

`

« jf j~y!. ~B5!

Equating linear terms in« yields

f1~x!52l0E
0

L

c~ ux2yu!e2sj ux2yuux2yuf0~y!dy

1l1f0~x!1l0E
0

L

c~ ux2yu!e2sj ux2yuf1~y!dy.

~B6!

We now consider whetherl1 vanishes in the neighborhoo
of any of the singularities. Forl1 to vanish the equation

f1~x!5l0E
0

L

c~ ux2yu!e2sj ux2yuf1~y!dy

2l0E
0

L

c~ ux2yu!e2sj ux2yuux2yuf0~y!dy

~B7!

must have a solution forf1(x). The Fredholm theorems@13#
state if Eq.~B7! has a solution it is necessary that

E
0

LS l0E
0

L

c~ ux2yu!e2sj ux2yuux2yuf0~y!dyD
3f0~x!dx50. ~B8!

We will prove that there is no nontrivial functionf(x) that
is symmetric or antisymmetric on@0,L# and satisfies

E
0

LE
0

L

c~ ux2yu!e2sj ux2yuux2yuf~x!f~y!dxdy50.

~B9!

This is sufficient to show that there is no solution forf1(x)
and thatl1 does not vanish sincef0(x) is an eigenfunction
and so is either symmetric or antisymmetric on@0,L#. By
g

-

on
is

noting thatc(ux2yu)e2sj ux2yu has positive upper and lowe
bounds on@0,L# and applying integral inequalities, the crite
rion in Eq.~B9! can be reformulated so that it is sufficient
show there is no nontrivialf(x) that is symmetric or anti-
symmetric on@0,L# and satisfies

E
0

LS E
0

L

ux2yuf~x!dxDf~y!dy50. ~B10!

By noting that the Picard equation for an interval, given b

E
0

L

ux2yuf~y!dy5 f ~x!, ~B11!

has a solution that must satisfyf(x)5 f 9(x)/2 @14#, Eq.
~B10! can be reformulated as

E
0

L

f 9~x! f ~x!dx50. ~B12!

Integrating by parts then yields

f 8~L ! f ~L !2 f 8~0! f ~0!2E
0

L

@ f 8~x!#2dx50. ~B13!

Since f(x)5 f 9(x) is symmetric or antisymmetric on th
interval @0,L#, and f 8(x) also must have the same symmet
or antisymmetry and thus Eq.~B13! requiresf 8(x) to vanish
on @0,L# and hencef(x) to vanish also. Thus there is n
nontrivial f(x) satisfying Eq.~B9! with appropriate symme-
try. It has thus been proved thatl1 does not vanish in the
neighborhood ofsi .

At every singularity we conclude that the eigenvalue c
be expressed as

l~s!511~s2sj !l11o@~s2sj !
2# ~B14!

for real s wherel1Þ0. For reals, Eq. ~10! becomes

Q~x,s!'
f j~x0 ,s!f j~x,s!

l1$s2sj1o@~s2sj !
2#%

. ~B15!

By analytic continuation, Eq.~B15! extends to complexs in
the vicinity of sj and each singularity is thus a simple pol

The conclusion of this Appendix is that the turning poi
distributionQ(x,s) has a countably infinite set of singular
ties for negatives which are all simple poles.

APPENDIX C: SCALING OF DECAY CONSTANT
WITH SYSTEM SIZE

In this Appendix the scaling for the estimated decay co
stant with system size is obtained by considering Eq.~18!.

If we denote the numerator of Eq.~18! by N we find

N5122E
0

L

c~x!dx22E
0

L

c~x!G~x!dx, ~C1!

G~x!5S 12
x

L D cosS px

L D1
1

p
sinS p

x

L D21. ~C2!
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AssumingL is sufficiently large thatc(L)}L2a, we define
A through the relationc(x)5Ax2a for largex. Hence

N512F12
2A

a21

1

La21G12E
0

L

c~x!(
i 52

`
ai

Li
xidx,

~C3!

where theai are the Taylor coefficients, defined by

(
i 52

`

aiu
i512~12u!cos~pu!2

1

p
sin~pu!. ~C4!

Defining F i(x) through the relationF i(x)5*c(x)xidx, we
then have

N5
2A

a21

1

La21
12(

i 52

`
ai

Li
@F i~L !2F i~0!#. ~C5!

AssumingL is sufficiently large thatc(L)}L2a, asymptoti-
cally we find F i(L)5Ci1ALi 112a/( i 112a). Without
loss of generality we can defineCi50, which corresponds to
assigning an arbitrary value to the integration constant
F(x) in the definitionF i(x)5*c(x)xidx. This yields
s

-

et
r

N5S 1

a21
1(

i 52

`
ai

i 112a D 2A

La21
2(

i 52

`

ai

2F i~0!

Li
,

~C6!

where theF i(0) are constants that depend on the smax
behavior ofc(x).

We now consider the denominator of Eq.~18!, which we
denote byD. We find

D522E
0

L

c~x!xdx12E
0

L

c~x!x(
i 52

`

ai

xi

Li
dx. ~C7!

Using the same notation as in Eq.~C6! then yields

D52
2A

22a

1

La21
12F1~0!

1(
i 52

`

aiF 2A

i 122a

1

La22
2

2F i 11~0!

Li G . ~C8!

Using Eqs.~C6! and~C8! in Eq. ~18! we find that the decay
constant for the asymptotic exponential is given by Eq.~20!.
.
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